Photocatalytic Degradation of 4-chlorophenol by CuMoO4-doped TiO2 Nanoparticles Synthesized by Chemical Route

Abstract

The photocatalytic degradation of 4-chlorophenol (4-CP) in aqueous solution was studied using Cu-MoO4- doped TiO2 nanoparticles under Visible light radiation. The photocatalysts were synthesized by chemical route from TiO2 with different concentration of CuMoO4 (CuxMoxTi1-xO6; where, x values ranged from 0.05 to 0.5). The prepared nanoparticles are characterized by XRD, BET surface area, TEM, UV-vis diffuse reflectance spectra, Raman spectroscopy, XPS and EDAX spectroscopy were used to investigate the nanoparticles structure, size distribution, and qualitative elemental analysis of the composition. The CuxMoxTi1-xO6 (x = 0.05) showed high activity for degradation of 4-CP under visible light. The surface area of the catalyst was found to be 101 m2/g. The photodegradation process was optimized by using CuxMoxTi1-xO6 (x = 0.05) catalyst at a concentration level of 1 g/l. A maximum photocatalytic efficiency of 96.9% was reached at pH = 9 after irradiation for 3 hours. Parameters affecting the photocatalytic process such as catalyst loading, concentration of the catalyst and the dopant concentration, solution pH, and concentration of 4-CP have been investigated.

Share and Cite:

T. Ghorai, "Photocatalytic Degradation of 4-chlorophenol by CuMoO4-doped TiO2 Nanoparticles Synthesized by Chemical Route," Open Journal of Physical Chemistry, Vol. 1 No. 2, 2011, pp. 28-36. doi: 10.4236/ojpc.2011.12005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. C. Yu, G. S. Li, X. C. Wang, X. L. Hu, C. W. Leung and Z. D. Zhang, “An Ordered Cubic Im3m Mesoporous Cr-TiO2 Visible Light Photocatalyst,” Chemical Communications, Vol. 25, 2006, pp. 2717-2719. doi:10.1039/b603456j
[2] T. Tatsuma, S. Tachibana, T. Miwa, D. A. Tryk and A. Fujishima, “Remote Bleaching of Methylene Blue by UV-Irradiated TiO2 in the Gas Phase,” Journal of Physical Chemistry B, Vol. 103, No. 38, 1999, pp. 8033-8035. doi:10.1021/jp9918297
[3] S. Parra, S. E. Stanca, I. Guasaquillo and K. R. Thampi, “Photocatalytic Degradation of Atrazine Using Suspended and Supported TiO2,” Applied Catalysis B: Environmental, Vol. 51, No. 2, 2004, pp. 107-116. doi:10.1016/j.apcatb.2004.01.021
[4] T. Tatsuma, S. Tachibana and A. Fujishima, “Remote Oxidation of Organic Compounds by UV-Irradiated TiO2 via the Gas Phase,” Journal of Physical Chemistry B, 2001, Vol. 105, No. 29, pp. 6987-6992. doi:10.1021/jp011108j
[5] Y. Chen, K. Wang and L. Lou, “Photodegradationof Dye Pollutants on Silica Gel Supported Ti02 Particles Undervisible Light Irradiation,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 163, No. 1-2, 2004, pp. 281-287. doi:10.1016/j.jphotochem.2003.12.012
[6] K. Kawahara, Y. Ohko, T. Tatsuma and A. Fujishima, “Surface Diffusion Behavior of Photo-Generated Active Species or Holes on TiO2 Photocatalysts,” Physical Chemistry Chemical Physics, 2003, Vol. 5, No. 21, pp. 4764-4766. doi:10.1039/b311230f
[7] I. K. Konstantinou and T. A. Albanis, “TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations,” Applied Catalysis B: Environmental, Vol. 49, No. 1, 2004, pp. 1-14. doi:10.1016/j.apcatb.2003.11.010
[8] N. L. Wu, M. S. Lee, Z. J. Pon and J. Z. Hsu, “Effect of Calcination Atmosphere on TiO2 Photocatalysis in Hydrogen Production from Methanol/Water Solution,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 163, No. 1-2, 2004, pp. 277-280. doi:10.1016/j.jphotochem.2003.12.009
[9] H. Q. Zhan and H. Tian, “Photocatalytic Degradation of Acid Azo Dyes in Aqueous TiO2 Suspension I. The Effect of Substituents,” Dyes and Pigments, Vol. 37, No. 3, 1998, pp. 231-239. doi:10.1016/S0143-7208(97)00060-0
[10] A. Fuerte, M. D. Hernandez-Alonso, A. J. Maira, A. Martínez-Arias, M. Fernandez-Garcia, J. C. Conesa and J. Soria, “Visible Light-Activated Nanosized Doped-TiO2 Photocatalysts,” Chemical Communications, 2001, pp. 2718-2719. doi:10.1039/b107314a
[11] C. Adan, A. Bahamonde, M. Fernandez-Garcia and A. Martinez-Arias, “Structure and Activity of Nanosized Iron-Doped Anatase TiO2 Catalysts for Phenol Photocatalytic Degradation,” Applied Catalysis B: Environmental, Vol. 72, No. 1-2, 2007, pp. 11-17. doi:10.1016/j.apcatb.2006.09.018
[12] H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata and S. Yanagida, “Hydrothermal Synthesis of Nanosized Anatase and Rutile TiO2 Using Amorphous Phase TiO2,” Journal of Materials Chemistry, Vol. 11, No. 6, 2001, pp. 1694-1703. doi:10.1039/b008974p
[13] N. I. Al-Salim, S. A. Bagshaw, A. Bittar, T. Kemmitt, A. J. McQuillan, A. M. Mills and M. J. Ryan, “Characterisation and Activity of Sol-Gel Prepared TiO/sub2 Photocatalysts Modified with Ca, Sr or Ba Ion Additives,” Journal of Materials Chemistry, Vol. 10, No. 10, 2000, pp. 2358-2363.
[14] R. Niishiro, H. Kato and A. Kudo, “Nickel and Either Tantalum or Niobium-Codoped TiO2 and SrTiO3 PhotoCatalysts with Visible-Light Response for H2 or O2 Evolution from Aqueous Solutions,” Physical Chemistry Chemical Physics, Vol. 7, 2005, pp. 2241-2245. doi:10.1039/b502147b
[15] C.-Y. Wang, C. Bottcher, D. W. Bahnemann and J. K. Dohrmann, “A Comparative Study of Nanometer Sized Fe(III)-Doped TiO2 Photocatalysts: Synthesis, Characterization and Activity,” Journal of Materials Chemistry, Vol. 13, 2003, pp. 2322-2329. doi:10.1039/b303716a
[16] M. Gratzel and F. H. Russell, “Electron Paramagnetic Resonance Studies of Doped Titanium Dioxide Colloids,” The Journal of Physical Chemistry, Vol. 94, No. 6, 1990, pp. 2566-2572. doi:10.1021/j100369a064
[17] M. A. Barakata, H. Schaeffer, G. Hayes and S. Ismat-Shah, “Photocatalytic Degradation of 2-Chlorophenol by Co-Doped TiO2 Nanoparticles,” Applied Catalysis B: Environmental, Vol. 57, No. 1, 2004, pp. 23-30. doi:10.1016/j.apcatb.2004.10.001
[18] S. H. Woo, W. W. Kim, S. J. Kim and C. K. Rhee, “Photocatalytic Behaviors of Transition Metal Ion Doped TiO2 Powder Synthesized by Mechanical Alloying,” Materials Science and Engineering: A, Vol. 449-451, 2007, pp. 1151-1154. doi:10.1016/j.msea.2006.01.165
[19] Z. Hua, Z. Manping, X. Zongfeng and G. K.-C. Low, “Titanium Dioxide Mediated Photocatalytic Degradation of Monocrotophos ,” Water Research, Vol. 29, No. 12, 1995, pp. 2681-2688. doi:10.1016/0043-1354(95)00141-7
[20] D. Beydoun, H. Tse, R. Amal, G. Low and S. McEvoy, “Effect of Copper(II) on the Photocatalytic Degradation of Sucrose,” Journal of Molecular Catalysis A: Chemical, Vol. 177, No. 2, 2002, pp. 265-272. doi:10.1016/S1381-1169(01)00272-2
[21] M. Bideau, B. Claudel, L. Faure and H. Kazouan, “The Photo-Oxidation of Acetic Acid by Oxygen in the Presence of Titanium Dioxide and Dissolved Copper Ions,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 61, No. 2, 1991, pp. 269-280. doi:10.1016/1010-6030(91)85095-X
[22] K. I. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka and A. Itaya, “Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder,” Bulletin of the Chemical Society of Japan, Vol. 58, 1985, p. 20.
[23] T. K. Ghorai, D. Dhak, S. K. Biswas, S. Dalai and P. Pramanik, “Photocatalytic Oxidation of Organic Dyes by Nano-Sized Metal Molybdate Incorporated Titanium Dioxide (MxMoxTi1?xO6) (M = Ni, Cu, Zn) Photocatalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 237, No. 1-2, 2007, pp. 224-229. doi:10.1016/j.molcata.2007.03.075
[24] N. I. Al-salim, S. A. Bagshaw, A. Bittar, T. Kemmitt, A. J. McQuillan, A. M. Mills and M. J. Ryan, “Characterisation and Activity of Sol-Gel-Prepared TiO2 Photocatalysts Modified with Ca, Sr or Ba Ion Additives,” Journal of Materials Chemistry, Vol. 10, 2000, pp. 2358-2363.
[25] M. Krantz, H. J. Rosen, R. M. Macfarlane and V. Y. Lee, “Effect of Oxygen Stoichiometry on Softening of Raman Active Lattice Modes in YBa2Cu3Ox,” Physical Review B, Vol. 38, No. 7, 1988, pp. 4992-4995. doi:10.1103/PhysRevB.38.4992
[26] I. E. Wachs, “Raman and IR Studies of Surface Metal Oxide Species on Oxide Supports: Supported Metal Oxide Catalysts,” Catalysis Today, Vol. 27, No. 3-4, 1996, pp. 437-455. doi:10.1016/0920-5861(95)00203-0
[27] A. Doongr and W. H. Chang, “Photodegradation of Parathion in Aqueous Titanium Dioxide and Zero Valent Iron Solutions in the Presence of Hydrogen Peroxide,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 116, No. 3, 1998, pp. 221-228. doi:10.1016/S1010-6030(98)00292-5
[28] M. A. Fox and M. T. Dulay, “Heterogeneous Photocatalysis,” Chemical Reviews, Vol. 93, No. 1, 1993, pp. 341-357. doi:10.1021/cr00017a016
[29] D. Chen and A. K. Ray, “Photocatalytic Kinetics of Phenol and Its Derivatives over UV Irradiated TiO2,” Applied Catalysis B: Environmental, Vol. 23, No. 2-3, 1999, pp. 143-157. doi:10.1016/S0926-3373(99)00068-5
[30] J. M. Tseng and C. P. Huang, “Removal of Chlorophenols from Water by Photocatalytic Oxidation,” Water Science and Technology, Vol. 23, 1991, p. 377.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.