Production of γ-Al2O3 from Kaolin


The paper reports a process for synthesis of γ-alumina from kaolin. Kaolin was transformed to meta-kaolin by calcination at 800oC for 2h. γ-alumina powder was synthesized through extracting alumina from meta- kaolin via H2SO4 and meta-kaolin reactions and consequently precipitation in ethanol, which led to form the aluminum sulfate. The precipitated aluminum sulfate was dried and calcined at 900 oC for 2h, which resulted the formation of γ-alumina. The structure of γ-alumina was confirmed by XRD and FTIR and the mean particles size of γ-alumina was determined by SEM to be 0.5 - 0.9 µm. The study revealed the kaolin could be promising material for preparation of γ-alumina.

Share and Cite:

S. Hosseini, A. Niaei and D. Salari, "Production of γ-Al2O3 from Kaolin," Open Journal of Physical Chemistry, Vol. 1 No. 2, 2011, pp. 23-27. doi: 10.4236/ojpc.2011.12004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Wang, X. Li, S. Wang, Y. Li and Y. Zhai, “Synthesis of Gamma-Alumina via Precipitation in Ethanol,” Materials Letters, Vol. 62, No. 20, 2009, pp. 3552-3554. doi:10.1016/j.matlet.2008.03.048
[2] W. Gitzen, “Aluminas as Ceramic Material,” American Ceramic Society, Columbus, 1970.
[3] J. McColm, “Ceramic Science for Materials Technologist,” Chapman and Hall, New York, 1983.
[4] H. H. Murray, “Traditional and Newapplications for Kaolin, Smectite, and Palygorskite: A General Overview,” Applied Clay Science, Vol. 17, No. 5-6, 2000, pp. 207- 211.
[5] R. H. Zhao, F. Guo, Y. Q. Hu and H. Q. Zhao, “Self- Assembly Synthesis of Organized Mesoporous Alumina by Precipitation Method in Aqueous Solution,” Microporous and Mesoporous Materials, Vol. 93, No. 1-3, 2006, pp. 212-216.
[6] E. Kato, K. Diamon, M. Nanbu, “Decomposition of Two Aluminum Sulfates and Characterization of the Resultant Aluminas,” Journal of the American Ceramic Society, Vol. 64, No. 8, 1981, pp. 436-443. doi:10.1111/j.1151-2916.1981.tb09892.x
[7] J. E. Blendell, H. K. Bowen and R. L. Coble, “Effects of Particle Distribution on Transformation-Induced Toughening in an MgO-PSZ,” American Ceramic Society Bulletin, Vol. 63, 1984, pp. 799-804.
[8] F. W. Dynys and J. W.,Halloran, “Alpha Alumina Formation in Alum-Derived Gamma Alumina,”Journal of the American Ceramic Society, Vol. 65, No. 9, 1982, pp. 442-448. doi:10.1111/j.1151-2916.1982.tb10511.x
[9] G. Paglia, C. E. Buckley, A. L. Rohl, R. D. Hart, K. Winter and A. J. Studer, “Boehmite Derived γ-Alumina System. 1. Structural Evolution with Temperature, with the Identification and Structural Determination of a New Transition Phase, γ’-Alumina,” Chemistry of Materials, Vol. 16, No. 2, 2004, p. 220. doi:10.1021/cm034917j
[10] Y. H. Wang, J. Wang, M. Q. Shen and W. L. Wang, “Synthesis and Properties of Thermostable γ-Alumina Prepared by Hydrolysis of Phosphide Aluminum,” Journal of Alloys and Compounds, Vol. 467, No. 1-2, 2009, pp. 405-412.
[11] K. M. Parida, A. C. Pradhan, J. Das and N. Sahu, “Synthesis and Characterization of Nano-Sized Porous Gamma-Alumina by Control Precipitation Method,” Materials Chemistry and Physics, Vol. 113, No. 1, 2009, pp. 244- 248.
[12] Y. Yajima, M. Hida, S. Taruta and K. Kitajima, “Pulse Electric Current Sintering and Strength of Sintered Alumina Using γ-Alumina Powders Prepared by the Sol-Gel Method,” Journal of the Ceramic Society of Japan, Vol. 111, No. 1294, 2003, pp. 419-425. doi:10.2109/jcersj.111.419
[13] G. P. Johnston, R. Muenchausen, D. M. Smith, W. Fahrenholtz and S. Foltyn, “Reactive Laser Ablation Synthesis of Nanosize Alumina Powder,” Journal of the American Ceramic Society, Vol. 75, No. 12, 1992, pp. 3293-3298. doi:10.1111/j.1151-2916.1992.tb04424.x
[14] T. Ogihara, H. Nakagawa, T. Yanagawa, N. Ogata and K. Yoshida, “Preparation of Monodisperse, Spherical Alumina Powders from Alkoxides,” Journal of the American Ceramic Society, Vol. 74, 1991, p. 2263.
[15] E. Kato, K. Daimon and M. Nanbu, “Decomposition of Two Aluminum Sulfates and Characterization of the Resultant Aluminas,” Journal of the American Ceramic Society, Vol. 64, 1981, p. 436.
[16] H. Noda, K. Muramoto, and H. Kim, “Preparation of Nano-Structured Ceramics Using Nanosized Al2O3 Particles,” Journal of Materials Science, Vol. 38, No. 9, 2003, pp. 2043-2047. doi:10.1023/A:1023553925110
[17] W. A. Deer, R. A. Howie and J. Zussman, “An Introduction to the Rock-Forming Minerals,” 2 Edition, Longman, Harlow, 1992.
[18] M. Bellotto, A. Gualtieri, G. Artioli and S. M. Clark, “Kinetic Study of the Kaolinite-Mullite Reaction Sequence. Part I: Kaolinite Dehydroxylation,” Physics and Chemistry of Minerals, Vol. 22, No. 4, 1995, pp. 207-214. doi:10.1007/BF00202253
[19] J. H. Park, S. W. Kim, S. H. Lee, H. S. Kim, S. S. Park and H. C. Park, “Synthesis of Alumina Powders from Kaolin with and without Ultrasounds,” Journal of Materials Synthesis and Processing, Vol. 10, No. 5, 2002, pp. 289-293.
[20] K. Sohlberg, S. J. Pennycook and S. T. Pantelides, “Hydrogen and the Structure of the Transition Aluminas,” Journal of the American Ceramic Society, Vol. 121, 1999, p. 7493.
[21] C. Belver, M. A. B. Munoz and M. A. Vicente, “Chemical Activation of a Kaolinite under Acid and Alkaline Conditions,” Chemistry of Materials, Vol. 14, No. 5, 2002, pp. 2033-2043. doi:10.1021/cm0111736
[22] Q. Liu, A. Q. Wang, X. H. Wang, W. D. Guo and T. Zhang, “Synthesis, Characterization and Catalytic Applications of Mesoporous γ-Alumina from Boehmite Sol,” Microporous and Mesoporous Materials, Vol. 111, No. 1-3, 2008, pp. 323-333. doi:10.1016/j.micromeso.2007.08.007
[23] S. X. Zhou, M. Antonietti and M. Niederberger, “Low-Temperature Synthesis of γ-Alumina Nanocrystals from Aluminum Acetylacetonate in Nonaqueous Media,” Small, Vol. 3, No. 5, 2007, pp. 763-767. doi:10.1002/smll.200700027

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.