[1]
|
Blumenthal, R.D., Waskewich, C., Goldenberg, D.M., Lew, W., Flefleh, C. and Burton, J. (2001) Chronotherapy and Chronotoxicity of the Cyclooxygenase-2 Inhibitor, Celecoxib, in Athymic Mice Bearing Human Breast Cancer Xenografts. Clincal Cancer Research, 7, 3178-3185.
|
[2]
|
Hrushesky, W.J., Lester, B. and Lannin, D. (1999) Circadian Coordination of Cancer Growth and Metastatic Spread. International Journal of Cancer, 83, 365-373.
http://dx.doi.org/10.1002/(SICI)1097-0215(19991029)83:3<365::AID-IJC12>3.3.CO;2-W
|
[3]
|
Levi, F. (2001) Circadian Chronotherapy for Human Cancers. The Lancet Oncology, 2, 307-315.
http://dx.doi.org/10.1016/S1470-2045(00)00326-0
|
[4]
|
Ortiz-Tudela, E., Mteyrek, A., Ballesta, A., Innominato, P.F. and Levi, F. (2013) Cancer Chronotherapeutics: Experimental, Theoretical, and Clinical Aspects. Handbook of Experimental Pharmacology, 217, 261-288.
http://dx.doi.org/10.1007/978-3-642-25950-0_11
|
[5]
|
Kondratov, R. (2014) Circadian Clock and Cancer Therapy: An Unexpected Journey. Annals of Medicine, 46, 189-190.
http://dx.doi.org/10.3109/07853890.2014.920213
|
[6]
|
Izumo, M., Sato, T.R., Straume, M. and Johnson, C.H. (2006) Quantitative Analyses of Circadian Gene Expression in Mammalian Cell Cultures. PLoS Computational Biology, 2, e136. http://dx.doi.org/10.1371/journal.pcbi.0020136
|
[7]
|
Pendergast, J.S., Yeom, M., Reyes, B.A., Ohmiya, Y. and Yamazaki, S. (2010) Disconnected Circadian and Cell Cycles in a Tumor-Driven Cell Line. Communicative & Integrative Biology, 3, 536-539.
http://dx.doi.org/10.4161/cib.3.6.12841
|
[8]
|
Yamanaka, I., Koinuma, S., Shigeyoshi, Y., Uchiyama, Y. and Yagita, K. (2007) Presence of Robust Circadian Clock Oscillation under Constitutive Over-Expression of mCry1 in Rat-1 Fibroblasts. FEBS Letters, 581, 4098-4102.
http://dx.doi.org/10.1016/j.febslet.2007.07.053
|
[9]
|
Fujioka, A., Takashima, N. and Shigeyoshi, Y. (2006) Circadian Rhythm Generation in a Glioma Cell Line. Biochemical and Biophysical Research Communications, 346, 169-174. http://dx.doi.org/10.1016/j.bbrc.2006.05.094
|
[10]
|
Rana, S. and Mahmood, S. (2010) Circadian Rhythm and Its Role in Malignancy. Journal of Circadian Rhythms, 8, 3. http://dx.doi.org/10.1186/1740-3391-8-3
|
[11]
|
Zhao, N., Tang, H., Yang, K. and Chen, D. (2013) Circadian Rhythm Characteristics of Oral Squamous Cell Carcinoma Growth in an Orthotopic Xenograft Model. OncoTargets and Therapy, 6, 41-46.
http://dx.doi.org/10.2147/OTT.S39955
|
[12]
|
Wu, A., Oh, S., Wiesner, S.M., Ericson, K., Chen, L., Hall, W.A., Champoux, P.E., Low, W.C. and Ohlfest, J.R. (2008) Persistence of CD133+ Cells in Human and Mouse Glioma Cell Lines: Detailed Characterization of GL261 Glioma Cells with Cancer Stem Cell-Like Properties. Stem Cells and Development, 17, 173-184.
http://dx.doi.org/10.1089/scd.2007.0133
|
[13]
|
Puram, R.V., Kowalczyk, M.S., de Boer, C.G., Schneider, R.K., Miller, P.G., McConkey, M., Tothova, Z., Tejero, H., Heckl, D., Jaras, M., Chen, M.C., Li, H., Tamayo, A., Cowley, G.S., Rozenblatt-Rosen, O., Al-Shahrour, F., Regev, A. and Ebert, B.L. (2016) Core Circadian Clock Genes Regulate Leukemia Stem Cells in AML. Cell, 165, 303-316.
http://dx.doi.org/10.1016/j.cell.2016.03.015
|
[14]
|
Filipski, E., King, V.M., Li, X., Granda, T.G., Mormont, M.C., Claustrat, B., Hastings, M.H. and Levi, F. (2003) Disruption of Circadian Coordination Accelerates Malignant Growth in Mice. Pathologie Biologie (Paris), 51, 216-219.
http://dx.doi.org/10.1016/S0369-8114(03)00034-8
|
[15]
|
Filipski, E., Li, X.M. and Levi, F. (2006) Disruption of Circadian Coordination and Malignant Growth. Cancer Causes & Control, 17, 509-514. http://dx.doi.org/10.1007/s10552-005-9007-4
|
[16]
|
Gery, S., Komatsu, N., Baldjyan, L., Yu, A., Koo, D. and Koeffler, H.P. (2006) The Circadian Gene Per1 Plays an Important Role in Cell Growth and DNA Damage Control in Human Cancer Cells. Molecular Cell, 22, 375-382.
http://dx.doi.org/10.1016/j.molcel.2006.03.038
|
[17]
|
Xiang, S., Mao, L., Duplessis, T., Yuan, L., Dauchy, R., Dauchy, E., Blask, D.E., Frasch, T. and Hill, S.M. (2012) Oscillation of Clock and Clock Controlled Genes Induced by Serum Shock in Human Breast Epithelial and Breast Cancer Cells: Regulation by Melatonin. Breast Cancer (Auckl), 6, 137-150.
|
[18]
|
Antoch, M.P., Gorbacheva, V.Y., Vykhovanets, O., Toshkov, I.A., Kondratov, R.V., Kondratova, A.A., Lee, C. and Nikitin, A.Y. (2008) Disruption of the Circadian Clock Due to the Clock Mutation Has Discrete Effects on Aging and Carcinogenesis. Cell Cycle, 7, 1197-1204. http://dx.doi.org/10.4161/cc.7.9.5886
|
[19]
|
Ozturk, N., Lee, J.H., Gaddameedhi, S. and Sancar, A. (2009) Loss of Cryptochrome Reduces Cancer Risk in p53 Mutant Mice. Proceedings of the National Academy of Sciences of the United States of America, 106, 2841-2846.
http://dx.doi.org/10.1073/pnas.0813028106
|
[20]
|
Elshazley, M., Sato, M., Hase, T., Yamashita, R., Yoshida, K., Toyokuni, S., Ishiguro, F., Osada, H., Sekido, Y., Yokoi, K., Usami, N., Shames, D.S., Kondo, M., Gazdar, A.F., Minna, J.D. and Hasegawa, Y. (2012) The Circadian Clock Gene BMAL1 Is a Novel Therapeutic Target for Malignant Pleural Mesothelioma. International Journal of Cancer, 131, 2820-2831. http://dx.doi.org/10.1002/ijc.27598
|
[21]
|
Kelleher, F.C., Rao, A. and Maguire, A. (2014) Circadian Molecular Clocks and Cancer. Cancer Letters, 342, 9-18.
http://dx.doi.org/10.1016/j.canlet.2013.09.040
|
[22]
|
Hrushesky, W.J., Grutsch, J., Wood, P., Yang, X., Oh, E.Y., Ansell, C., Kidder, S., Ferrans, C., Quiton, D.F., Reynolds, J., Du-Quiton, J., Levin, R., Lis, C. and Braun, D. (2009) Circadian Clock Manipulation for Cancer Prevention and Control and the Relief of Cancer Symptoms. Integrative Cancer Therapies, 8, 387-397.
http://dx.doi.org/10.1177/1534735409352086
|
[23]
|
Sharma, V.P., Anderson, N.T. and Geusz, M.E. (2014) Circadian Properties of Cancer Stem Cells in Glioma Cell Cultures and Tumorspheres. Cancer Letters, 345, 65-74. http://dx.doi.org/10.1016/j.canlet.2013.11.009
|
[24]
|
Xu, S. and Powers, M.A. (2009) Nuclear Pore Proteins and Cancer. Seminars in Cell & Developmental Biology, 20, 620-630. http://dx.doi.org/10.1016/j.semcdb.2009.03.003
|
[25]
|
Turner, J.G., Dawson, J., Cubitt, C.L., Baz, R. and Sullivan, D.M. (2014) Inhibition of CRM1-Dependent Nuclear Export Sensitizes Malignant Cells to Cytotoxic and Targeted Agents. Seminars in Cancer Biology, 27, 62-73.
http://dx.doi.org/10.1016/j.semcancer.2014.03.001
|
[26]
|
Shen, A., Wang, Y., Zhao, Y., Zou, L., Sun, L. and Cheng, C. (2009) Expression of CRM1 in Human Gliomas and Its Significance in p27 Expression and Clinical Prognosis. Neurosurgery, 65, 153-159.
http://dx.doi.org/10.1227/01.neu.0000348550.47441.4b
|
[27]
|
Gough, S.M., Slape, C.I. and Aplan, P.D. (2011) NUP98 Gene Fusions and Hematopoietic Malignancies: Common Themes and New Biologic Insights. Blood, 118, 6247-6257. http://dx.doi.org/10.1182/blood-2011-07-328880
|
[28]
|
Qiu, J.J., Zeisig, B.B., Li, S., Liu, W., Chu, H., Song, Y., Giordano, A., Schwaller, J., Gronemeyer, H., Dong, S. and So, C.W. (2015) Critical Role of Retinoid/Rexinoid Signaling in Mediating Transformation and Therapeutic Response of NUP98-RARG Leukemia. Leukemia, 29, 1153-1162. http://dx.doi.org/10.1038/leu.2014.334
|
[29]
|
Deveau, A.P., Forrester, A.M., Coombs, A.J., Wagner, G.S., Grabher, C., Chute, I.C., Leger, D., Mingay, M., Alexe, G., Rajan, V., Liwski, R., Hirst, M., Steigmaier, K., Lewis, S.M., Look, A.T. and Berman, J.N. (2015) Epigenetic Therapy Restores Normal Hematopoiesis in a Zebrafish Model of NUP98-HOXA9-Induced Myeloid Disease. Leukemia, 29, 2086-2097. http://dx.doi.org/10.1038/leu.2015.126
|
[30]
|
Humeniuk, R., Koller, R., Bies, J., Aplan, P. and Wolff, L. (2014) Brief Report: Loss of p15Ink4b Accelerates Development of Myeloid Neoplasms in Nup98-HoxD13 Transgenic Mice. Stem Cells, 32, 1361-1366.
http://dx.doi.org/10.1002/stem.1635
|
[31]
|
Zhu, H.H., Zhao, X.S., Qin, Y.Z., Lai, Y.Y. and Jiang, H. (2016) B-Cell Acute Lymphoblastic Leukemia Associated with SET-NUP214 Rearrangement: A Case Report and Review of the Literature. Oncology Letters, 11, 2644-2650.
http://dx.doi.org/10.3892/ol.2016.4260
|
[32]
|
Sandahl, J.D., Coenen, E.A., Forestier, E., Harbott, J., Johansson, B., Kerndrup, G., Adachi, S., Auvrignon, A., Beverloo, H.B., Cayuela, J.M., Chilton, L., Fornerod, M., de Haas, V., Harrison, C.J., Inaba, H., Kaspers, G.J., Liang, D.C., Locatelli, F., Masetti, R., Perot, C., Raimondi, S.C., Reinhardt, K., Tomizawa, D., von Neuhoff, N., Zecca, M., Zwaan, C.M., van den Heuvel-Eibrink, M.M. and Hasle, H. (2014) T(6;9)(P22;Q34)/DEK-NUP214-Rearranged Pediatric Myeloid Leukemia: An International Study of 62 Patients. Haematologica, 99, 865-872.
http://dx.doi.org/10.3324/haematol.2013.098517
|
[33]
|
Weiss, R.B. (1992) The Anthracyclines: Will We Ever Find a Better Doxorubicin? Seminars in Oncology, 19, 670-686.
|
[34]
|
Keizer, H.G., Pinedo, H.M., Schuurhuis, G.J. and Joenje, H. (1990) Doxorubicin (Adriamycin): A Critical Review of Free Radical-Dependent Mechanisms of Cytotoxicity. Pharmacology & Therapeutics, 47, 219-231.
http://dx.doi.org/10.1016/0163-7258(90)90088-J
|
[35]
|
Minotti, G., Menna, P., Salvatorelli, E., Cairo, G. and Gianni, L. (2004) Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacological Reviews, 56, 185-229.
http://dx.doi.org/10.1124/pr.56.2.6
|
[36]
|
Carvalho, C., Santos, R.X., Cardoso, S., Correia, S., Oliveira, P.J., Santos, M.S. and Moreira, P.I. (2009) Doxorubicin: The Good, the Bad and the Ugly Effect. Current Medicinal Chemistry, 16, 3267-3285.
http://dx.doi.org/10.2174/092986709788803312
|
[37]
|
Kiyomiya, K., Matsuo, S. and Kurebe, M. (2001) Mechanism of Specific Nuclear Transport of Adriamycin: The Mode of Nuclear Translocation of Adriamycin-Proteasome Complex. Cancer Research, 61, 2467-2471.
|
[38]
|
Hiler, D.J., Bhattacherjee, A., Yamazaki, S., Tei, H. and Geusz, M.E. (2008) Circadian mPer1 Gene Expression in Mesencephalic Trigeminal Nucleus Cultures. Brain Research, 1214, 84-93.
http://dx.doi.org/10.1016/j.brainres.2008.03.041
|
[39]
|
Mohan, P. and Rapoport, N. (2010) Doxorubicin as a Molecular Nanotheranostic Agent: Effect of Doxorubicin Encapsulation in Micelles or Nanoemulsions on the Ultrasound-Mediated Intracellular Delivery and Nuclear Trafficking. Molecular Pharmaceutics, 7, 1959-1973. http://dx.doi.org/10.1021/mp100269f
|
[40]
|
Liu, S., Guo, Y., Huang, R., Li, J., Huang, S., Kuang, Y., Han, L. and Jiang, C. (2012) Gene and Doxorubicin Co-Delivery System for Targeting Therapy of Glioma. Biomaterials, 33, 4907-4916.
http://dx.doi.org/10.1016/j.biomaterials.2012.03.031
|
[41]
|
Baltes, S., Freund, I., Lewis, A.L., Nolte, I. and Brinker, T. (2010) Doxorubicin and Irinotecan Drug-Eluting Beads for Treatment of Glioma: A Pilot Study in a Rat Model. Journal of Materials Science: Materials in Medicine, 21, 1393-1402. http://dx.doi.org/10.1007/s10856-009-3803-4
|
[42]
|
Glas, M., Koch, H., Hirschmann, B., Jauch, T., Steinbrecher, A., Herrlinger, U., Bogdahn, U. and Hau, P. (2007) Pegylated Liposomal Doxorubicin in Recurrent Malignant Glioma: Analysis of a Case Series. Oncology, 72, 302-307.
http://dx.doi.org/10.1159/000113052
|
[43]
|
Hau, P., Fabel, K., Baumgart, U., Rummele, P., Grauer, O., Bock, A., Dietmaier, C., Dietmaier, W., Dietrich, J., Dudel, C., Hubner, F., Jauch, T., Drechsel, E., Kleiter, I., Wismeth, C., Zellner, A., Brawanski, A., Steinbrecher, A., Marienhagen, J. and Bogdahn, U. (2004) Pegylated Liposomal Doxorubicin-Efficacy in Patients with Recurrent High-Grade Glioma. Cancer, 100, 1199-1207. http://dx.doi.org/10.1002/cncr.20073
|
[44]
|
Darling, J.L. and Thomas, D.G. (2001) Response of Short-Term Cultures Derived from Human Malignant Glioma to Aziridinylbenzoquinone, Etoposide and Doxorubicin: An in Vitro Phase II Trial. Anticancer Drugs, 12, 753-760.
http://dx.doi.org/10.1097/00001813-200110000-00007
|
[45]
|
Van Dongen, H.P., Olofsen, E., VanHartevelt, J.H. and Kruyt, E.W. (1999) Searching for Biological Rhythms: Peak Detection in the Periodogram of Unequally Spaced Data. Journal of Biological Rhythms, 14, 617-620.
http://dx.doi.org/10.1177/074873099129000984
|
[46]
|
Nader, N., Chrousos, G.P. and Kino, T. (2009) Circadian Rhythm Transcription Factor CLOCK Regulates the Transcriptional Activity of the Glucocorticoid Receptor by Acetylating Its Hinge Region Lysine Cluster: Potential Physiological Implications. The FASEB Journal, 23, 1572-1583. http://dx.doi.org/10.1096/fj.08-117697
|
[47]
|
Bozek, K., Relogio, A., Kielbasa, S.M., Heine, M., Dame, C., Kramer, A. and Herzel, H. (2009) Regulation of Clock-Controlled Genes in Mammals. PLoS ONE, 4, e4882. http://dx.doi.org/10.1371/journal.pone.0004882
|
[48]
|
Ukai-Tadenuma, M., Yamada, R.G., Xu, H., Ripperger, J.A., Liu, A.C. and Ueda, H.R. (2011) Delay in Feedback Repression by Cryptochrome 1 Is Required for Circadian Clock Function. Cell, 144, 268-281.
http://dx.doi.org/10.1016/j.cell.2010.12.019
|
[49]
|
Brennan, C., Momota, H., Hambardzumyan, D., Ozawa, T., Tandon, A., Pedraza, A. and Holland, E. (2009) Glioblastoma Subclasses Can Be Defined by Activity among Signal Transduction Pathways and Associated Genomic Alterations. PLoS ONE, 4, e7752. http://dx.doi.org/10.1371/journal.pone.0007752
|
[50]
|
Zhang, X.P., Zheng, G., Zou, L., Liu, H.L., Hou, L.H., Zhou, P., Yin, D.D., Zheng, Q.J., Liang, L., Zhang, S.Z., Feng, L., Yao, L.B., Yang, A.G., Han, H. and Chen, J.Y. (2008) Notch Activation Promotes Cell Proliferation and the Formation of Neural Stem Cell-Like Colonies in Human Glioma Cells. Molecular and Cellular Biochemistry, 307, 101-108. http://dx.doi.org/10.1007/s11010-007-9589-0
|
[51]
|
Katoh, Y. and Katoh, M. (2009) Hedgehog Target Genes: Mechanisms of Carcinogenesis Induced by Aberrant Hedgehog Signaling Activation. Current Molecular Medicine, 9, 873-886. http://dx.doi.org/10.2174/156652409789105570
|
[52]
|
Mitchell, M.I. and Engelbrecht, A.M. (2015) Circadian Rhythms and Breast Cancer: The Role of Per2 in Doxorubicin-Induced Cell Death. Journal of Toxicology, 2015, Article ID: 392360. http://dx.doi.org/10.1155/2015/392360
|
[53]
|
Granda, T.G., Filipski, E., D’Attino, R.M., Vrignaud, P., Anjo, A., Bissery, M.C. and Levi, F. (2001) Experimental Chronotherapy of Mouse Mammary Adenocarcinoma MA13/C with Docetaxel and Doxorubicin as Single Agents and in Combination. Cancer Research, 61, 1996-2001.
|
[54]
|
Voges, D., Zwickl, P. and Baumeister, W. (1999) The 26S Proteasome: A Molecular Machine Designed for Controlled Proteolysis. Annual Review of Biochemistry, 68, 1015-1068. http://dx.doi.org/10.1146/annurev.biochem.68.1.1015
|
[55]
|
Sato, M., Mizoro, Y., Atobe, Y., Fujimoto, Y., Yamaguchi, Y., Fustin, J.M., Doi, M. and Okamura, H. (2011) Transportin 1 in the Mouse Brain: Appearance in Regions of Neurogenesis, Cerebrospinal Fluid Production/Sensing, and Circadian Clock. The Journal of Comparative Neurology, 519, 1770-1780. http://dx.doi.org/10.1002/cne.22600
|
[56]
|
Burcoglu, J., Zhao, L. and Enenkel, C. (2015) Nuclear Import of Yeast Proteasomes. Cells, 4, 387-405.
http://dx.doi.org/10.3390/cells4030387
|
[57]
|
Enenkel, C. (2014) Nuclear Transport of Yeast Proteasomes. Biomolecules, 4, 940-955.
http://dx.doi.org/10.3390/biom4040940
|
[58]
|
Kornmann, B., Preitner, N., Rifat, D., Fleury-Olela, F. and Schibler, U. (2001) Analysis of Circadian Liver Gene Expression by ADDER, a Highly Sensitive Method for the Display of Differentially Expressed mRNAs. Nucleic Acids Research, 29, e51. http://dx.doi.org/10.1093/nar/29.11.e51
|
[59]
|
Panda, S., Antoch, M.P., Miller, B.H., Su, A.I., Schook, A.B., Straume, M., Schultz, P.G., Kay, S.A., Takahashi, J.S. and Hogenesch, J.B. (2002) Coordinated Transcription of Key Pathways in the Mouse by the Circadian Clock. Cell, 109, 307-320. http://dx.doi.org/10.1016/S0092-8674(02)00722-5
|
[60]
|
Storch, K.F., Lipan, O., Leykin, I., Viswanathan, N., Davis, F.C., Wong, W.H. and Weitz, C.J. (2002) Extensive and Divergent Circadian Gene Expression in Liver and Heart. Nature, 417, 78-83. http://dx.doi.org/10.1038/nature744
|
[61]
|
Storch, K.F., Paz, C., Signorovitch, J., Raviola, E., Pawlyk, B., Li, T. and Weitz, C.J. (2007) Physiological Importance of a Circadian Clock outside the Suprachiasmatic Nucleus. Cold Spring Harbor Symposia on Quantitative Biology, 72, 307-318. http://dx.doi.org/10.1101/sqb.2007.72.053
|
[62]
|
Hughes, M.E., DiTacchio, L., Hayes, K.R., Vollmers, C., Pulivarthy, S., Baggs, J.E., Panda, S. and Hogenesch, J.B. (2009) Harmonics of Circadian Gene Transcription in Mammals. PLoS Genetics, 5, e1000442.
http://dx.doi.org/10.1371/journal.pgen.1000442
|
[63]
|
Tan, D.S., Bedard, P.L., Kuruvilla, J., Siu, L.L. and Razak, A.R. (2014) Promising SINEs for Embargoing Nuclear-Cytoplasmic Export as an Anticancer Strategy. Cancer Discovery, 4, 527-537.
http://dx.doi.org/10.1158/2159-8290.CD-13-1005
|
[64]
|
Dickmanns, A., Monecke, T. and Ficner, R. (2015) Structural Basis of Targeting the Exportin CRM1 in Cancer. Cells, 4, 538-568. http://dx.doi.org/10.3390/cells4030538
|
[65]
|
Xu, D., Farmer, A., Collett, G., Grishin, N.V. and Chook, Y.M. (2012) Sequence and Structural Analyses of Nuclear Export Signals in the NESdb Database. Molecular Biology of the Cell, 23, 3677-3693.
http://dx.doi.org/10.1091/mbc.E12-01-0046
|
[66]
|
Kwon, I., Lee, J., Chang, S.H., Jung, N.C., Lee, B.J., Son, G.H., Kim, K. and Lee, K.H. (2006) BMAL1 Shuttling Controls Transactivation and Degradation of the CLOCK/BMAL1 Heterodimer. Molecular and Cellular Biology, 26, 7318-7330. http://dx.doi.org/10.1128/MCB.00337-06
|
[67]
|
Cermakian, N. and Sassone-Corsi, P. (2000) Multilevel Regulation of the Circadian Clock. Nature Reviews Molecular Cell Biology, 1, 59-67. http://dx.doi.org/10.1038/35036078
|
[68]
|
Savvidis, C. and Koutsilieris, M. (2012) Circadian Rhythm Disruption in Cancer Biology. Molecular Medicine, 18, 1249-1260.
|
[69]
|
Tamanini, F., Yagita, K., Okamura, H. and van der Horst, G.T. (2005) Nucleocytoplasmic Shuttling of Clock Proteins. Methods in Enzymology, 393, 418-435. http://dx.doi.org/10.1016/S0076-6879(05)93020-6
|
[70]
|
Miyazaki, K., Mesaki, M. and Ishida, N. (2001) Nuclear Entry Mechanism of Rat PER2 (rPER2): Role of rPER2 in Nuclear Localization of CRY Protein. Molecular and Cellular Biology, 21, 6651-6659.
http://dx.doi.org/10.1128/MCB.21.19.6651-6659.2001
|
[71]
|
Sakakida, Y., Miyamoto, Y., Nagoshi, E., Akashi, M., Nakamura, T.J., Mamine, T., Kasahara, M., Minami, Y., Yoneda, Y. and Takumi, T. (2005) Importin Alpha/Beta Mediates Nuclear Transport of a Mammalian Circadian Clock Component, mCRY2, Together with mPER2, through a Bipartite Nuclear Localization Signal. The Journal of Biological Chemistry, 280, 13272-13278. http://dx.doi.org/10.1074/jbc.M413236200
|
[72]
|
Yagita, K., Tamanini, F., Yasuda, M., Hoeijmakers, J.H., van der Horst, G.T. and Okamura, H. (2002) Nucleocytoplasmic Shuttling and mCRY-Dependent Inhibition of Ubiquitylation of the mPER2 Clock Protein. The EMBO Journal, 21, 1301-1314. http://dx.doi.org/10.1093/emboj/21.6.1301
|
[73]
|
Vielhaber, E.L., Duricka, D., Ullman, K.S. and Virshup, D.M. (2001) Nuclear Export of Mammalian PERIOD Proteins. The Journal of Biological Chemistry, 276, 45921-45927. http://dx.doi.org/10.1074/jbc.M107726200
|
[74]
|
Liang, Y., Franks, T.M., Marchetto, M.C., Gage, F.H. and Hetzer, M.W. (2013) Dynamic Association of NUP98 with the Human Genome. PLoS Genetics, 9, e1003308. http://dx.doi.org/10.1371/journal.pgen.1003308
|
[75]
|
Sangel, P., Oka, M. and Yoneda, Y. (2014) The Role of Importin-Betas in the Maintenance and Lineage Commitment of Mouse Embryonic Stem Cells. FEBS Open Bio, 4, 112-120. http://dx.doi.org/10.1016/j.fob.2014.01.001
|
[76]
|
Perez-Terzic, C., Faustino, R.S., Boorsma, B.J., Arrell, D.K., Niederlander, N.J., Behfar, A. and Terzic, A. (2007) Stem Cells Transform into a Cardiac Phenotype with Remodeling of the Nuclear Transport Machinery. Nature Reviews Cardiology, 4, S68-S76. http://dx.doi.org/10.1038/ncpcardio0763
|
[77]
|
Lupu, F., Alves, A., Anderson, K., Doye, V. and Lacy, E. (2008) Nuclear Pore Composition Regulates Neural Stem/ Progenitor Cell Differentiation in the Mouse Embryo. Developmental Cell, 14, 831-842.
http://dx.doi.org/10.1016/j.devcel.2008.03.011
|
[78]
|
Jacinto, F.V., Benner, C. and Hetzer, M.W. (2015) The Nucleoporin Nup153 Regulates Embryonic Stem Cell Pluripotency through Gene Silencing. Genes & Development, 29, 1224-1238. http://dx.doi.org/10.1101/gad.260919.115
|
[79]
|
Yagita, K., Horie, K., Koinuma, S., Nakamura, W., Yamanaka, I., Urasaki, A., Shigeyoshi, Y., Kawakami, K., Shimada, S., Takeda, J. and Uchiyama, Y. (2010) Development of the Circadian Oscillator during Differentiation of Mouse Embryonic Stem Cells in Vitro. Proceedings of the National Academy of Sciences of the United States of America, 107, 3846-3851. http://dx.doi.org/10.1073/pnas.0913256107
|
[80]
|
Malik, A., Jamasbi, R.J., Kondratov, R.V. and Geusz, M.E. (2015) Development of Circadian Oscillators in Neurosphere Cultures during Adult Neurogenesis. PLoS ONE, 10, e0122937. http://dx.doi.org/10.1371/journal.pone.0122937
|
[81]
|
Malik, A., Kondratov, R.V., Jamasbi, R.J. and Geusz, M.E. (2015) Circadian Clock Genes Are Essential for Normal Adult Neurogenesis, Differentiation, and Fate Determination. PLoS ONE, 10, e0139655.
http://dx.doi.org/10.1371/journal.pone.0139655
|
[82]
|
Kageyama, R., Yoshiura, S., Masamizu, Y. and Niwa, Y. (2007) Ultradian Oscillators in Somite Segmentation and Other Biological Events. Cold Spring Harbor Symposia on Quantitative Biology, 72, 451-457.
http://dx.doi.org/10.1101/sqb.2007.72.012
|