[1]
|
Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J. and Mayes, A.M. (2008) Science and Technology for Water Purification in the Coming Decades. Nature, 452, 301-310. http://dx.doi.org/10.1038/nature06599
|
[2]
|
Broussard Sr, P.C. (1992) Water Clarification Method and Apparatus. US Patent 5277803A.
|
[3]
|
(1991) Toxics in the Community, National and Local Perspectives. In: U.S. EPA, Ed., The 1989 Toxics Release Inventory National Report, US Government Printing Office, Washington DC.
|
[4]
|
Pimentel, D., McLaughlin, L., Zepp, A., Lakitan, B., Kraus, T., Kleinman, P., Vancini, F., Roach, W.J., Graap, E., Keeton, W.S. and Selig, G. (1991) Environmental and Economic Effects of Reducing Pesticide Use. BioScience, 41, 402-409. http://dx.doi.org/10.2307/1311747
|
[5]
|
Wania, F. and MacKay, D. (1996) Peer Reviewed: Tracking the Distribution of Persistent Organic Pollutants. Environmental Science & Technology, 30, 390A-396A. http://dx.doi.org/10.1021/es962399q
|
[6]
|
Froehner, S., Martins, R.F., Furukawa, W. and Errera, M.R. (2009) Water Remediation by Adsorption of Phenol onto Hydrophobic Modified Clay. Water, Air, and Soil Pollution, 199, 107-113. http://dx.doi.org/10.1007/s11270-008-9863-0
|
[7]
|
Mondal, P., Majumder, C. and Mohanty, B. (2006) Laboratory Based Approaches for Arsenic Remediation from Contaminated Water: Recent Developments. Journal of Hazardous Materials, 137, 464-479. http://dx.doi.org/10.1016/j.jhazmat.2006.02.023
|
[8]
|
Nawar, S.S. and Doma, H.S. (1989) Removal of Dyes from Effluents Using Low-Cost Agricultural By-Products. Science of the Total Environment, 79, 271-279. http://dx.doi.org/10.1016/0048-9697(89)90342-2
|
[9]
|
Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N. and Naidu, R. (2011) Bioremediation Approaches for Organic Pollutants: A Critical Perspective. Environment International, 37, 1362-1375. http://dx.doi.org/10.1016/j.envint.2011.06.003
|
[10]
|
Hicks, B. and Caplan, J.A. (1993) Bioremediation: A Natural Solution. [Decontamination of Soils and Groundwater]. Pollution Engineering; (United States), 25.
|
[11]
|
Head, I.M. (1998) Bioremediation: Towards a Credible Technology. Microbiology, 144, 599-608. http://dx.doi.org/10.1099/00221287-144-3-599
|
[12]
|
Cunningham, S.D. and Berti, W.R. (1993) Remediation of Contaminated Soils with Green Plants—An Overview. In Vitro Cellular & Developmental Biology-Plant, 29, 207-212. http://dx.doi.org/10.1007/BF02632036
|
[13]
|
Perelo, L.W. (2010) Review: In Situ and Bioremediation of Organic Pollutants in Aquatic Sediments. Journal of Hazardous Materials, 177, 81-89. http://dx.doi.org/10.1016/j.jhazmat.2009.12.090
|
[14]
|
Krempen, J.P. and Medbury III, C.S. (1995) Process for the Decontamination of Soils Contaminated by Petroleum Products. US Patents US5415777 A.
|
[15]
|
Stein, C. and Duouenne, D. (1994) Process for Absorbing Organic Polluting Products. US Patent US5360548 A.
|
[16]
|
Kopylova, L., Kashirin, A. and Svitsov, A. (2013) Hybrid Technology for Separation of Oil-in-Water Emulsions Combining Coalescing Filtration and Microfiltration. Petroleum Chemistry, 53, 585-589. http://dx.doi.org/10.1134/S0965544113080082
|
[17]
|
Boopathy, R. (2000) Factors Limiting Bioremediation Technologies. Bioresource Technology, 74, 63-67. http://dx.doi.org/10.1016/S0960-8524(99)00144-3
|
[18]
|
Kadlec, R.H. and Wallace, S. (2008) Treatment Wetlands. CRC Press, Boca Raton. http://dx.doi.org/10.1201/9781420012514
|
[19]
|
WHO (2004) Guidelines for Drinking-Water Quality: Recommendations. Vol. 1, World Health Organization.
|
[20]
|
WHO (2011) Guidelines for Drinking-Water Quality. Vol. 216, World Health Organization, 303-304.
|
[21]
|
Wist, J., Sanabria, J., Dierolf, C., Torres, W. and Pulgarin, C. (2002) Evaluation of Photocatalytic Disinfection of Crude Water for Drinking-Water Production. Journal of Photochemistry and Photobiology A: Chemistry, 147, 241-246. http://dx.doi.org/10.1016/S1010-6030(01)00615-3
|
[22]
|
Udom, I., Ram, M.K., Stefanakos, E.K., Hepp, A.F. and Goswami, D.Y. (2013) One Dimensional-ZnO Nanostructures: Synthesis, Properties and Environmental Applications. Materials Science in Semiconductor Processing, 16, 2070-2083. http://dx.doi.org/10.1016/j.mssp.2013.06.017
|
[23]
|
Zhang, Y., Ram, M.K., Stefanakos, E.K. and Goswami, D.Y. (2012) Synthesis, Characterization, and Applications of ZnO Nanowires. Journal of Nanomaterials, 2012, Article ID: 624520. http://dx.doi.org/10.1155/2012/624520
|
[24]
|
Fujishima, A. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38. http://dx.doi.org/10.1038/238037a0
|
[25]
|
Fujishima, A., Honda, K.-I. and Kikuchi, S.-I. (1969) Photosensitized Electrolytic Oxidation on Semiconducting n- Type TiO2 Electrode. The Journal of the Society of Chemical Industry, Japan, 72, 108-113. http://dx.doi.org/10.1246/nikkashi1898.72.108
|
[26]
|
Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemann, D.W. (1995) Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95, 69-96. http://dx.doi.org/10.1021/cr00033a004
|
[27]
|
Fujishima, A., Rao, T.N. and Tryk, D.A. (2000) Titanium Dioxide Photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1-21. http://dx.doi.org/10.1016/S1389-5567(00)00002-2
|
[28]
|
Di Paola, A., García-López, E., Marcì, G. and Palmisano, L. (2012) A Survey of Photocatalytic Materials for Environmental Remediation. Journal of Hazardous Materials, 211-212, 3-29. http://dx.doi.org/10.1016/j.jhazmat.2011.11.050
|
[29]
|
Carp, O., Huisman, C.L. and Reller, A. (2004) Photoinduced Reactivity of Titanium Dioxide. Progress in Solid State Chemistry, 32, 33-177. http://dx.doi.org/10.1016/j.progsolidstchem.2004.08.001
|
[30]
|
Wold, A. (1993) Photocatalytic Properties of Titanium Dioxide (TiO2). Chemistry of Materials, 5, 280-283. http://dx.doi.org/10.1021/cm00027a008
|
[31]
|
Dvoranova, D., Brezova, V., Mazúr, M. and Malati, M.A. (2002) Investigations of Metal-Doped Titanium Dioxide Photocatalysts. Applied Catalysis B: Environmental, 37, 91-105. http://dx.doi.org/10.1016/S0926-3373(01)00335-6
|
[32]
|
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y. (2001) Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 293, 269-271.
|
[33]
|
Anpo, M. and Takeuchi, M. (2003) The Design and Development of Highly Reactive Titanium Oxide Photocatalysts Operating under Visible Light Irradiation. Journal of Catalysis, 216, 505-516. http://dx.doi.org/10.1016/S0021-9517(02)00104-5
|
[34]
|
Chen, X., Liu, L., Peter, Y.Y. and Mao, S.S. (2011) Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science, 331, 746-750.
|
[35]
|
Seery, M.K., George, R., Floris, P. and Pillai, S.C. (2007) Silver Doped Titanium Dioxide Nanomaterials for Enhanced Visible Light Photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 189, 258-263. http://dx.doi.org/10.1016/j.jphotochem.2007.02.010
|
[36]
|
Yang, P., Lu, C., Hua, N. and Du, Y. (2002) Titanium Dioxide Nanoparticles Co-Doped with Fe3+ and Eu3+ Ions for Photocatalysis. Materials Letters, 57, 794-801. http://dx.doi.org/10.1016/S0167-577X(02)00875-3
|
[37]
|
Saggioro, E.M., Oliveira, A.S., Pavesi, T., Maia, C.G., Ferreira, L.F.V. and Moreira, J.C. (2011) Use of Titanium Dioxide Photocatalysis on the Remediation of Model Textile Wastewaters Containing Azo Dyes. Molecules, 16, 10370-10386. http://dx.doi.org/10.3390/molecules161210370
|
[38]
|
Lai, C.W., Juan, J.C., Ko, W.B. and Bee Abd Hamid, S. (2014) An Overview: Recent Development of Titanium Oxide Nanotubes as Photocatalyst for Dye Degradation. International Journal of Photoenergy, 2014, Article ID: 524135. http://dx.doi.org/10.1155/2014/524135
|
[39]
|
Khalid, N., Ahmed, E., Hong, Z., Sana, L. and Ahmed, M. (2013) Enhanced Photocatalytic Activity of Graphene-TiO2 Composite under Visible Light Irradiation. Current Applied Physics, 13, 659-663. http://dx.doi.org/10.1016/j.cap.2012.11.003
|
[40]
|
Geim, A.K. and Novoselov, K.S. (2007) The Rise of Graphene. Nature Materials, 6, 183-191. http://dx.doi.org/10.1038/nmat1849
|
[41]
|
Bonaccorso, F., Sun, Z., Hasan, T. and Ferrari, A.C. (2010) Graphene Photonics and Optoelectronics. Nature Photonics, 4, 611-622. http://dx.doi.org/10.1038/nphoton.2010.186
|
[42]
|
Stoller, M.D., Park, S., Zhu, Y., An, J. and Ruoff, R.S. (2008) Graphene-Based Ultracapacitors. Nano Letters, 8, 3498-3502. http://dx.doi.org/10.1021/nl802558y
|
[43]
|
Messina, R. and Ben-Abdallah, P. (2013) Graphene-Based Photovoltaic Cells for Near-Field Thermal Energy Conversion. Scientific Reports, 3, Article No. 1383. http://dx.doi.org/10.1038/srep01383
|
[44]
|
Chang, H., Lv, X., Zhang, H. and Li, J. (2010) Quantum Dots Sensitized Graphene: In Situ Growth and Application in Photoelectrochemical Cells. Electrochemistry Communications, 12, 483-487. http://dx.doi.org/10.1016/j.elecom.2010.01.025
|
[45]
|
Xiang, Q., Yu, J. and Jaroniec, M. (2012) Graphene-Based Semiconductor Photocatalysts. Chemical Society Reviews, 41, 782-796. http://dx.doi.org/10.1039/C1CS15172J
|
[46]
|
Zhou, K., Zhu, Y., Yang, X., Jiang, X. and Li, C. (2011) Preparation of Grapheme-TiO2 Composites with Enhanced Photocatalytic Activity. New Journal of Chemistry, 35, 353-359. http://dx.doi.org/10.1039/C0NJ00623H
|
[47]
|
Alam, T.E., Ram, M.K., Ladanov, M., Alvi, F., Mujumdar, A. and Kumar, A. (2012) Synthesis and Characterization of Novel Graphene Silicon Oxide Nanocomposite Material. MRS Proceedings, 1400.
|
[48]
|
Gunti, S., Kumar, A. and Ram, M.K. (2015) Comparative Organics Remediation Properties of Nanostructured Graphene Doped Titanium Oxide and Graphene Doped Zinc Oxide Photocatalysts. American Journal of Analytical Chemistry, 6, 708-717. http://dx.doi.org/10.4236/ajac.2015.68068
|
[49]
|
Williams, G., Seger, B. and Kamat, P.V. (2008) TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano, 2, 1487-1491. http://dx.doi.org/10.1021/nn800251f
|
[50]
|
Stengl, V., Bakardjieva, S., Grygar, T.M., Bludská, J. and Kormunda, M. (2013) TiO2-Graphene Oxide Nanocomposite as Advanced Photocatalytic Materials. Chemistry Central Journal, 7, 41. http://dx.doi.org/10.1186/1752-153X-7-41
|
[51]
|
Maira, A., Yeung, K.L., Soria, J., Coronado, J., Belver, C., Lee, C. and Augugliaro, V. (2001) Gas-Phase Photo-Oxidation of Toluene Using Nanometer-Size TiO2 Catalysts. Applied Catalysis B: Environmental, 29, 327-336. http://dx.doi.org/10.1016/S0926-3373(00)00211-3
|
[52]
|
Ferrari-Lima, A.M., de Souza, R.P., Mendes, S.S., Marques, R.G., Gimenes, M.L. and Fernandes-Machado, N.R.C. (2015) Photodegradation of Benzene, Toluene and Xylenes under Visible Light Applying N-Doped Mixed TiO2 and ZnO Catalysts. Catalysis Today, 241, 40-46. http://dx.doi.org/10.1016/j.cattod.2014.03.042
|
[53]
|
Lannoy, A., Kania, N., Bleta, R., Fourmentin, S., Machut-Binkowski, C., Monflier, E. and Ponchel, A. (2016) Photocatalysis of Volatile Organic Compounds in Water: Towards a Deeper Understanding of the Role of Cyclodextrins in the Photodegradation of Toluene over Titanium Dioxide. Journal of Colloid and Interface Science, 461, 317-325. http://dx.doi.org/10.1016/j.jcis.2015.09.022
|
[54]
|
Ramirez, A.M., Demeestere, K., De Belie, N., Mantyla, T. and Levanen, E. (2010) Titanium Dioxide Coated Cementitious Materials for Air Purifying Purposes: Preparation, Characterization and Toluene Removal Potential. Building and Environment, 45, 832-838. http://dx.doi.org/10.1016/j.buildenv.2009.09.003
|
[55]
|
Ohno, T., Tokieda, K., Higashida, S. and Matsumura, M. (2003) Synergism between Rutile and Anatase TiO2 Particles in Photocatalytic Oxidation of Naphthalene. Applied Catalysis A: General, 244, 383-391. http://dx.doi.org/10.1016/S0926-860X(02)00610-5
|
[56]
|
Pramauro, E., Prevot, A.B., Vincenti, M. and Gamberini, R. (1998) Photocatalytic Degradation of Naphthalene in Aqueous TiO2 Dispersions: Effect of Nonionic Surfactants. Chemosphere, 36, 1523-1542. http://dx.doi.org/10.1016/S0045-6535(97)10051-0
|
[57]
|
Sharma, A. and Lee, B.-K. (2015) Adsorp-tive/Photo-Catalytic Process for Naphthalene Removal from Aqueous Media Using In-Situ Nickel Doped Titanium Nanocomposite. Journal of Environmental Management, 155, 114-122. http://dx.doi.org/10.1016/j.jenvman.2015.03.008
|