Nanoparticles in Drug Delivery and Cancer Therapy: The Giant Rats Tail


Nanotechnology has the potential to offer solutions to these current obstacles in cancer therapies, because of its unique size and large surface-to-volume ratios. Nanoparticles may have properties of self-assembly, stability, specificity, drug encapsulation and biocompatibility as a result of their material composition. Nanoscale devices have impacted cancer biology at three levels: early detection, tumour imaging using radiocontrast nanoparticles or quantum dots; and drug delivery using nanovectors and hybrid nanoparticles. Other role of nanotechnology, in management of various diseases and also in drug resistance in leukemia by blocking drug efflux from cancer cells and induce efficient delivery of siRNA into lymphocytes to block apoptosis in sepsis and targeting tumors also. Nanocrystals labeling with immune cells can act as a platform technology for nanoimmunotherapy. This review addresses the advancement of nanoparticles in drug delivery and in cancer therapy.

Share and Cite:

V. Prabhu, S. Uzzaman, V. Grace and C. Guruvayoorappan, "Nanoparticles in Drug Delivery and Cancer Therapy: The Giant Rats Tail," Journal of Cancer Therapy, Vol. 2 No. 3, 2011, pp. 325-334. doi: 10.4236/jct.2011.23045.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Majuru and O. Oyewumi, “Nanotechnology in Drug Development and Life Cycle Management,” Nanotechnology in Drug Delivery, Vol. 10, No. 4, 2009, pp. 597-619. doi:10.1007/978-0-387-77668-2_20
[2] K. K. Jain, “The Role of Nanobiotechnology in Drug Discovery,” Drug Discover Today, Vol. 10, No. 21, 2005, pp. 1435-1442. doi:10.1016/S1359-6446(05)03573-7
[3] C. Buzea, I. I. Pacheco and K. Robbie, “Nanomaterials and Nanoparticles: Sources and Toxicity,” Biointerphases, Vol. 2, No. 4, 2007, pp. 17-71.
[4] B. D. Fahlman, “Materials Chemistry,” Springer, Berlin, 2007, pp. 282-283. doi:10.1007/978-1-4020-6120-2
[5] W. Yang, J. I. Peters, R. O. and Williams, Eds., “Inhaled Nanoparticles—A Current Review,” International Journal of Pharmceutical, Vol. 22, No. 356, 2008, pp. 239-247. doi:10.1016/j.ijpharm.2008.02.011
[6] B. Mishra, B. B Patel and S. Tiwari, “Colloidal Nanocarriers: A Review on Formulation Technology, Types and Applications toward Targeted Drug Delivery,” Nanomedicine, Vol. 6, No. 1, 2010, pp. 9-24. doi:10.1016/j.nano.2009.04.008
[7] Z. Ghalanbor, S. A. Marashi and B. Ranjbar, “Nanotechnology Helps Medicine: Nanoscale Swimmers and Their Future Applications,” Medical Hypotheses, Vol. 65, No. 1, 2005, pp. 198-199. doi:10.1016/j.mehy.2005.01.023
[8] T. Kubik, K. Bogunia-Kubik and M. Sugisaka, “Nanotechnology on Duty in Medical Applications,” Current Pharmaceutical Biotechnology, Vol. 6, No. 1, 2005, pp. 17-33.
[9] S. N. Kundra, “Toward the Emergence of Nanoneurosurgery: Part III-Nanomedicine: Targeted Nanotherapy, Nanosurgery and Progress toward the Realization of Nanoneurosurgery,” Neurosurgery, Vol. 62, No. 6, 2008, p. 1384. doi:10.1227/01.neu.0000333332.65576.c7
[10] A. Cavalcanti, B. Shirinzadeh and R. A. Freitas, “Medical Nanorobot Architecture Based on Nanobioelectronics,” Recent Patents on Nanotechnology, Vol. 1 No. 1, 2007, pp. 1-10. doi:10.2174/187221007779814745
[11] M. Boukallel, M. Gauthier, M. Dauge, E. Piat and J. Abadie, “Smart Microrobots for Mechanical Cell Characterization and Cell Convoying,” IEE Transaction on Biomedical Engneering, Vol. 54, No. 8, 2007, pp. 1536-1540. doi:10.1109/TBME.2007.891171
[12] D. A. La Van, T. McGuire and R. Langer, “Small-Scale Systems for in vivo Drug Delivery,” Nature Biotechnology, Vol. 21, No. 10, 2003, pp. 1184-1191. doi:10.1038/nbt876
[13] A. Cavalcanti and B. Shirinzadeh, “Nanorobot Architecture for Medical Target Identification,” Nanotechnology, Vol. 19, 2008, p. 015103. doi:10.1088/0957-4484/19/01/015103
[14] R. R. Zhu, L. L. Qin, M. Wang, S. L. Wang, R. Zhang, Z. X. Liu, X. Y. Sun and S. D. Yao, “Preparation, Characterization, and Anti-tumor Property of Podophyllotoxin-Loaded Solid Lipid Nanoparticles,” Nanotechnology, Vol. 20, No. 5, 2009, p. 55702. doi:10.1088/0957-4484/20/5/055702
[15] K. K. Jain, “Role of Nanotechnology in Development of New Therapies for Diseases of the Nervous System,” Nanomedicine, Vol. 1, No. 1, 2006, pp. 9-12. doi:10.2217/17435889.1.1.9
[16] J. C. Pickup, Z. L. Zhi, F. Khan, T. Saxl and D. J. Birch, “Nanomedicine and Its Potential in Diabetes Research and Practice,” Diabetes/Metabolism Research and Reviews, Vol. 24, No. 8, 2008, pp. 604-610. doi:10.1002/dmrr.893
[17] L. Jianguo, Z. Li, Z. Yi, W. Huanan, L. Jidong, Z. Qin and L. Yubao, “Development of Nanohydroxyapatite/ Polycarbonate Composite for Bone Repair,” Journal of Biomaterials Applications, Vol. 24, No. 1, 2009, pp. 31-45. doi:10.1177/0885328209102756
[18] A. Nowacek, L. M. Kosloski and H. E. Gendelman, “Neurodegenerative Disorders and Nanoformulated Drug Development,” Nanomedicine, Vol. 4, No. 5, 2009, pp. 541-555. doi:10.2217/nnm.09.37
[19] D. N. Patel and S. R. Bailey, “Nanotechnology in Cardiovascular Medicine,” Catheterization and Cardiovascular Interventions, Vol. 69, No. 5, 2007, pp. 643-654. doi:10.1002/ccd.21060
[20] S. F. Elswaifi, J. R. Palmieri, K. S. Hockey and B. A. Rzigalinski, “Antioxidant Nanoparticles for Control of Infectious Diseases,” Infect Disorder Drug Target, Vol. 9, No. 4, 2009, pp. 445-452.
[21] M. Smola, T. Vandamme and A. Sokolowski, “Nanocarriers as Pulmonary Drug Delivery Systems to Treat and to Diagnose Respiratory and Non Respiratory Diseases,” International Journal of Nanomedicine, Vol. 3, No. 1, 2008, pp. 1-19.
[22] R. Pandey and G. K. Khuller, “Nanotechnology Based Drug Delivery System(s) for the Management of Tuberculosis,” Indian Journal of Experimental Biology, Vol. 44, No. 5, 2006, pp. 357-366.
[23] Y. Y. Liu, H. Miyoshi and M. Nakamura, “Nanomedicine for Drug Delivery and Imaging: A Promising Avenue for Cancer Therapy and Diagnosis Using Targeted Functional Nanoparticles,” International Journal of Cancer, Vol. 120, No. 12, 2007, pp. 2527-2537. doi:10.1002/ijc.22709
[24] X. Wang, L. L. Yang, Z. Chen and D. M. Shin, “Application of Nanotechnology in Cancer Therapy and Imaging,” A Cancer Journal for Clinicians, Vol. 58, 2008, pp. 97-110. doi:10.3322/CA.2007.0003
[25] K. Riehemann, S. W. Schneider, T. A. Luger, B. Godin, M. Ferrari and H. Fuchs, “Nanomedicine-Challenge and Perspectives,” Angewandte Chemie International Edition, Vol. 48. No. 5, 2009, pp. 872-897. doi:10.1002/anie.200802585
[26] R. Sinha, G. J. Kim, S. Nie and D. M. Shin, “Nanotechnology in Cancer Therapeutics: Bioconjugated Nanoparticles for Drug Delivery,” Molecular Cancer Therapeutics, Vol. 5, No. 8, 2006, pp. 1909-1917. doi:10.1158/1535-7163.MCT-06-0141
[27] K. J. Cho, X. Wang, S. M. Nie and D. H. Shin, “Therapeutic Nanoparticles for Drug Delivery in Cancer,” Clinical Cancer Research, Vol. 14, 2008, pp. 1310-1316. doi:10.1158/1078-0432.CCR-07-1441
[28] S. Jiang, M. K. Ganesammandhan and Y. Zhang, “Optical Imaging Guided Cancer Therapy with Fluorescent Nanoparticles,” Journal of the Royal Society Interface, Vol. 7, No. 42, 2010, pp. 3-18. doi:10.1098/rsif.2009.0243
[29] D. Castanotto and J. J. Rossi, “The Promises and Pitfalls of RNA-Interference-Based Therapeutics,” Nature, Vol. 457, No. 7228, 2009, pp. 426-433.
[30] S. Sandhiya, S. A. Dkhar and A. Surendiran, “Emerging Trends of Nanomedicine—An Overview,” Fundamental & Clinical Pharmacology, Vol. 23, No. 3, 2009, pp. 263-269. doi:10.1111/j.1472-8206.2009.00692.x
[31] R. D. Hofheinz, S. U. Gnad-Vogt, U. Beyer and A. Hochhaus, “Liposomal Encapsulated Anti-cancer Drug,” Anticancer Drugs, Vol. 16, No. 7, 2005, pp. 691-707. doi:10.1097/01.cad.0000167902.53039.5a
[32] S. M. Moghimi and J. Szebeni, “Stealth Liposomes and Long Circulating Nanoparticles: Critical Issues in Pharmacokinetics, Opsonization and Protein-Binding Properties,” Progress in Lipid Research, Vol. 42, No. 6, 2003, pp. 463-478. doi:10.1016/S0163-7827(03)00033-X
[33] D. K. Sarker, “Engineering of Nanoemulsions for Drug Delivery,” Current Drug Delivery, Vol. 2, 2005, pp. 297-310. doi:10.2174/156720105774370267
[34] S. A. Agnihotri, N. N. Mallikarjuna and T. M. Aminabhavi, “Recent Advances on Chitosan-Based Micro- and Nanoparticles in Drug Delivery,” Journal of Controlled Release, Vol. 100, No. 1, 2004, pp. 5-28. doi:10.1016/j.jconrel.2004.08.010
[35] L. J. Lee, “Polymer Nano-Engineering for Biomedical Applications,” Annals of Biomedical Engineering, Vol. 34, No. 1, 2006, pp. 75-88. doi:10.1007/s10439-005-9011-6
[36] A. K. Cherian, A. C. Rana and S. K. Jain, “Self-Assembled Carbohydratestabilized Ceramic Nanoparticles for the Parenteral Delivery of Insulin,” Drug Development and Industrial Pharmacy, Vol. 26, No. 4, 2000, pp. 459-463. doi:10.1081/DDC-100101255
[37] L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas and J. L. West, “Metal Nanoshells,” Annals of Biomedical Engineering, Vol. 34, No. 1, 2006, pp. 15-22.
[38] S. Bosi, T. Da Ros, G. Spalluto and M. Prato, “Fullerene Derivatives: An Attractive Tool for Biological Applications,” European Journal of Medicinal Chemistry, Vol. 38, No. 11-12, 2003, pp. 913-923. doi:10.1016/j.ejmech.2003.09.005
[39] G. Pagona and N. Tagmatarchis, “Carbon Nanotubes: Materials for Medicinal Chemistry and Biotechnological Applications,” European Journal of Medicinal Chemistry, Vol. 13, 2006, pp. 1789-1798. doi:10.2174/092986706777452524
[40] J. Weng and J. Ren, “Luminescent Quantum Dots: A Very Attractive and Promising Tool in Biomedicine,” Current Medicinal Chemistry, Vol. 13, 2006, pp. 97-909. doi:10.2174/092986706776361076
[41] M. E. Davis, Z. G. Chen and D. M. Shin, “Nanoparticle Therapeutics: An Emerging Treatmentmodality for Cancer,” Nature Reviews Drug Discovery, Vol. 7, 2008, pp. 771-782. doi:10.1038/nrd2614
[42] H. Pelicano, D. S. Martin, R. H, Xu and P. Huang, “Glycolysis Inhibition for Anticancer Treatment,” Oncogene, Vol. 25, 2006, pp. 4633-4646. doi:10.1038/sj.onc.1209597
[43] S. S. Nath, D. Chakdar, G. Gope and D. K. Avasthi, “Characterizations of CdS and ZnS Quantum Dots Prepared by Chemical Method on SBR Latex,” AZojono Journal of Nanotechnology Online, 2008. doi:10.2008, 2240.
[44] V. R. Reddy, “Gold Nanoparticles: Synthesis and Applications,” Thieme eJournals, Vol. 2006, No. 11, 2006, pp. 1791-1792.
[45] R. Das, S. S. Nath, D. Chakdar, G. Gope and R. Bhattacharjee, “Preparation of Silver Nanoparticles and Their Characterization,” AZojono Journal of Nanotechnology Online, Vol. 5, No. 10, 2009, p. 2240.
[46] X. Wang, J. Zhuang, Q. Peng and Y. Li, “General Strategy for Nanocrystal Synthesis,” Nature, Vol. 437, No. 7055, 2005, pp. 121-124. doi:10.1038/nature03968
[47] H. Zhu, C. Zhang and Y. Yin, “Novel Synthesis of Copper Nanoparticles: Influence of the Synthesis Conditions on the Particle Size,” Nanotechnology, Vol. 16, No. 12, 2005, p. 3079. doi:10.1088/0957-4484/16/12/059
[48] Y. Wei, H. Xie, L. Chen, Y. Li and C. Zhang, “Controlled Synthesis of Narrow-Dispersed Copper Nanoparticles,” Journal of Dispersion Science and Technology, Vol. 31, No. 3, 2010, pp. 364-367. doi:10.1080/01932690903196193
[49] L. S. Jackson and K. Lee, “Microencapsulation and the Food Industry,” Lebensmittel—Wissenschaft Technologie, 1991.
[50] S. Gelperina, K. Kisich, M. D. Iseman and L. Heifets, “The Potential Advantages of Nanoparticle Drug Delivery Systems in Chemotherapy of Tuberculosis,” American Journal of Respiratory and Critical Care Medicine, Vol. 172, No. 12, 2005, pp. 1487-1490. doi:10.1164/rccm.200504-613PP
[51] Y. Bae, N. Nishiyama, S. Fukushima, H. Koyama, M. Yasuhiro and K. Kataoka, “Preparation and Biological Characterization of Polymeric Micelle Drug Carriers with Intracellular pH-Triggered Drug Release Property: Tumor Permeability, Controlled Subcellular Drug Distribution, and Enhanced in vivo Antitumor Efficacy,” Bioconjugate Chemistry, Vol. 16, No. 1, 2005, pp. 122-130. doi:10.1021/bc0498166
[52] E. Physica, “Quantum Dots in Biology and Medicine,” Low-Dimensional Systems and Nanostructures, Vol. 25, No. 1, 2004, pp. 1-12. doi:10.1016/j.physe.2004.07.013
[53] Q. Yuan, S. Hein and R. D. Misra, “New Generation of Chitosan-Encapsulated ZnO Quantum Dots Loaded with Drug: Synthesis, Characterization and in vitro Drug Delivery Response,” Acta Biomaterialia, Vol. 6, No. 7, 2010, pp. 2732-2739. doi:10.1016/j.actbio.2010.01.025
[54] D. B. Fenske, A. Chonn and P. R. Cullis, “Liposomal Nanomedicines: An Emerging Field,” Toxicology Pathology, Vol. 36, No. 1, 2008, pp. 21-29. doi:10.1177/0192623307310960
[55] S. Praveen and S. K. Sahoo, “Polylymeric Nanoparticles for Cancer Therapy,” Journal of Drug Targeting, Vol. 16, No. 2, 2008, pp. 108-123. doi:10.1080/10611860701794353
[56] Y. Luo and G. D. Prestwich, “Cancer Targeted Polymeri Drug,” Current Cancer Drug Targets, Vol. 2, No. 3, 2002, pp. 209-226. doi:10.2174/1568009023333836
[57] J. L Arias, M. López-Viota, A. V. Delgado and M. A. Ruiz, “5-Fluorouracil-Loaded Iron/Ethylcellulose (Core/ Shell) Nanoparticles for Active Targeting of Cancer,” Journal of Drug Targeting, Vol. 17, No. 10, 2009, p. 813. doi:10.3109/10611860903244207
[58] T. Tanaka, P. Decuzzi , M. Cristofanilli, J. H. Sakamoto, E. Tasciotti, F. M. Robertson and M. Ferrari, “Nanotechnology for Breast Cancer Therapy,” Biomedical Microdevices, Vol. 11, No. 1, 2009, pp. 49-63. doi:10.1007/s10544-008-9209-0
[59] N. Nimje, A. Agarwal, G. K. Saraogi, N. Lariya, G. Rai, H. Agrawal and G. P. Agrawal, “Nanoparticulate Carriers of Rifabutin for Alveolar Targeting,” Journal of Drug Targeting, Vol. 17, No. 10, 2009. pp. 777-787. doi:10.3109/10611860903115308
[60] S. Wadhwa, R. Paliwal, S. R. Paliwal and S. P. Vyas, “Nanocarriers in Ocular Drug Delivery,” Current Pharmceutical Design, Vol. 15, No. 23, 2009, pp. 2724-2750. doi:10.2174/138161209788923886
[61] K. Ladewing, Z. P. Xu and G. C. Lu, “Layered Double Hydroxide Nanoparticle in Gene and Drug Delivery,” Expert Opinion on Drug Delivery, Vol. 6, No. 9, 2009, pp. 907-922. doi:10.1517/17425240903130585
[62] A. V. Kabanov and S. K. Vinogradov, “Nanogels as Pharmaceutical Carriers: Finite Network of Infinite Capabilities,” Angewandte Chemie International Edition, Vol. 48, No. 30, 2009, pp. 5418-5429. doi:10.1002/anie.200900441
[63] D. B. Buxton, “Nanomedicine for the Management of Lung and Blood Diseases,” Nanomedicine, Vol. 4, No. 3. 2009, pp. 331-339. doi:10.2217/nnm.09.8
[64] R. A. Freitas, “Nanodentistry,” Journal of American Dental Association, Vol. 131, No. 11, 2000, pp. 1559-1565.
[65] J. B. Lyczak and P. J. Schechter, “Nanocrystalline Silver Inhibits Antibiotic, Antiseptic-Resistant Bacteria,” Clinical Pharmacology Therapeutics, Vol. 77, 2005, p. 60. doi:10.1016/j.clpt.2004.12.119
[66] A. Samad, M. I. Alam and K. Saxena, “Dendrimers: A Class Of Polymers in the Nanotechnology for the Delivery of Active Pharmaceuticals,” Current Pharmceutical Design, Vol. 15, No. 25, 2009, pp. 2958-2969. doi:10.2174/138161209789058200
[67] L. Pasqua, S. Cundari, C. Ceresa and G. Cavaletti, “Recent Development, Applications, and Perspectives of Mesoporous Silica Particles in Medicine and Biotechnology,” Current Medical Chemistry, Vol. 16, No. 23, 2009, pp. 3054-3063. doi:10.2174/092986709788803079
[68] K. Ladewig, Z. P. Xu and G. C. Lu, “Layered Double Hydroxide Nanoparticles in Gene and Drug Delivery,” Expert Opinion on Drug Delivery, Vol. 6, No. 9. 2009, pp. 907-922. doi:10.1517/17425240903130585
[69] H. Devalapally, A. Chakilam and M. M. Amiji, “Role of Nanothechnology in Pharmaceutical Product Development,” Journal of Pharmaceutical Sciences, Vol. 96, No. 10, 2007, pp. 2547-2567. doi:10.1002/jps.20875
[70] B. D. Chithrani, J. Stewart, C. Allen and D. A. Jaffray, “Intracellullar Uptake, Transport, and Processing of Nano- structures in Cancer Cells,” Nanomedicine, Vol. 5, No. 2, 2009, pp. 118-127. doi:10.1016/j.nano.2009.01.008
[71] E. S. Day, J. G. Morton and J. L. West, “Nanoparticles for Thermal Cancer Therapy,” Journal of Biomechanical Engneering, Vol. 131, No. 7, 2009, p. 74001. doi:10.1115/1.3156800
[72] G. Ting, C. H. Chang and H. E. Wang, “Cancer Nanotargeted Radiopharmaceutical for Tumor Imaging and Therapy,” Anticancer Research, Vol. 29, No. 10, 2009, pp. 4107-4108.
[73] B. Thierry, “Drug Nanocarriers and Functional Nanoparticles Application in Cancer Therapy,” Current Drug Delivery, Vol. 6, No. 4, 2009, pp. 391-403. doi:10.2174/156720109789000474
[74] S. Santra, D. Dutta, G. A.Walter and B. M. Moudgil, “Fluorescent Nanoparticle Probes for Cancer Imaging,” Technology in Cancer Research and Treatment, Vol. 4, No. 6, 2005, pp. 593-602.
[75] K. Licha and C. Olbrich, “Optical Imaging in Drug Discovery and Diagnostic Applications,” Advanced Drug Delivery Reviews, Vol. 57, No. 8, 2005, pp. 1087-1108. doi:10.1016/j.addr.2005.01.021
[76] P. Grodzinski, M. Silver and L. K. Molnar, “Nano-Technology for Cancer Diagnostics: Promises and Challenges,” Expert Review of Molecular Diagnostics, Vol. 6. No. 3, 2006, pp. 307-318. doi:10.1586/14737159.6.3.307
[77] J. Rao, A. Dragulescu-Andrasi and H. Yao, “Fluorescence Imaging in vivo: Recent Advances,” Current Opinion in Biotechnology, Vol. 18, No. 1, 2007, pp. 17-25. doi:10.1016/j.copbio.2007.01.003
[78] D. M. Huang, Y. Hung, B. S. Ko, S. C. Hsu, W. H. Chen, C. L. Chien, C. P. Tsai, C. T. Kuo, J. C. Kang, C. S. Yang, C. Y. Mou and Y. C. Chen, “Highly Efficient Cellular Labeling of Mesoporous Nanoparticles in Human Mesenchymal Stem Cells: Implication for Stem Cell Tracking,” Journal of the Federation of American Societies for Experimental Biology, Vol. 19, No. 14, 2005, pp. 2014-2016.
[79] J. Kim, J. E. Lee, S. H. Lee, J. H. Yu, J. H. Lee, T. G. Park and T. Hyecon. “Designed Fabrication of a Multifunctional Polymer Nanomedical Platform for Simultaneous Cancer-Targeted Imaging and Magnetically Guided Drug Delivery,” Advanced Materials, Vol. 20, 2008, pp. 478-483. doi:10.1002/adma.200701726
[80] K. Shah, A. Jacobs, X. O. Breakefield and R. Weissleder, “Molecular Imaging of Gene Therapy for Cancer,” Gene Therapy, Vol. 11, No. 15, pp. 1175-1187. doi:10.1038/
[81] Y. S. Lin, S. H. Wu, Y. Hung, Y. H. Chou, C. Chang, M. L. Lin, C. P. Tsai and C. Y. Mou, “Multifunctional Composite Nanoparticles: Magnetic, Luminescent, and Mesoporous,” Chemistry of Materials, Vol. 18, No. 22, 2006, pp. 5170-5172. doi:10.1021/cm061976z
[82] S. T. Selvan, P. K. Patra, C. Y. Ang and J. Y. Ying, “Synthesis of Silica-Coated Semiconductor and Magnetic Quantum Dots and Their Use in the Imaging of Live Cells,” Angewandte Chemie International Edition, Vol. 46, No. 14, 2007, pp. 2448-2452. doi:10.1002/anie.200604245
[83] S. H. Wu, Y. S. Lin, Y. Hung, Y. H. Chou, Y. H. Hsu, C. Chang and C. Y. Mou, “Multifunctional Mesoporous Silica Nanoparticles for Intracellular Labeling and Animal Magnetic Resonance Imaging Studies,” Chembiochem, Vol. 9, No. 1, 2008, pp. 53-57. doi:10.1002/cbic.200700509
[84] C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. H. Yang and L. W. Lo, “Near-Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and in vivo Biodistribution,” Advanced Functional Materials, Vol. 19, No. 2, 2009, pp. 215-222. doi:10.1002/adfm.200800753
[85] J. D. Byrne, T. Betancourt and L. Brannon-Peppas, “Active Targeting Schemes for Nanoparticle Systems in cancer Therapeutics,” Advanced Drug Delivery Reviews, Vol. 60, No. 15, 2008, pp. 1615-1626. doi:10.1016/j.addr.2008.08.005
[86] S. Acharya, F. Dilnawaz and S. K. Sahoo, “Targeted Epidermal Growth Factor Receptor Nanoparticle Bioconjugates for Breast Cancer Therapy,” Biomaterials, Vol. 30, No. 29, 2009, pp. 5737-5750. doi:10.1016/j.biomaterials.2009.07.008
[87] J. Folkman, “What Is the Evidence that Tumors are Angiogenesis Dependent?” Journal of naternational Cancer Insititution, Vol. 82, No. 1, 1990, pp. 4-6. doi:10.1093/jnci/82.1.4
[88] J. Folkman and Y. Shing, “Angiogenesis,” Journal of Biology Chemistry, Vol. 267, No. 10, 1992, pp. 931-934.
[89] D. F. Baban and L. W. Seymour, “Control of Tumour Vascular Permeability,” Advanced Drug Delivery Reviews, Vol. 34, No. 1, 1998, pp. 109-119. doi:10.1016/S0169-409X(98)00003-9
[90] J. W. Baish, Y. Gazit, D. A. Berk, M. Nozue, L. T. Baxter and R. K. Jain, “Role of Tumor Vascular Architecture in Nutrient and Drug Delivery: An Invasion Percolation-Based Network Model,” Microvascular Research, Vol. 51, No. 3, 1996, pp. 327-346. doi:10.1006/mvre.1996.0031
[91] R. K. Jain, “Delivery of Molecular Medicine to Solid Tumors: Lessons from in vivo Imaging of Gene Expression and Function,” Journal of Controlled Release, Vol. 74, No. 1-3, 2001, pp. 7-25. doi:10.1016/S0168-3659(01)00306-6
[92] R. Duncan, “The Dawning Era of Polymer Therapeutics,” Nature Reviews Drug Discovery, Vol. 2, No. 5, 2003, pp. 347-360. doi:10.1038/nrd1088
[93] L. Brannon-Peppas and J. O. Blanchette, “Nanoparticle and Targeted Systems for Cancer Therapy,” Advanced Drug Delivery Reviews, Vol. 56, No. 11, 2004, pp. 1649-1659. doi:10.1016/j.addr.2004.02.014
[94] K. Ulbrich, T. Etrych, P. Chytil, M. Jelínková and B. Ríhová, “Antibody-Targeted Polymer-Doxorubicin Conjugates with pH-Controlled Activation,” Journal of Drug Targeting, Vol. 12, No. 8, 2004, pp. 477-489. doi:10.1080/10611860400011869
[95] Z. Xu, W. Gu, J. Huang, H. Sui, Z. Zhou, Y. Yang, Z, Yan and Y. I. Li, “In vitro and in vivo Evaluation of Actively Targetable Nanoparticles for Paclitaxel Delivery,” International Journal of Pharmaceutics, Vol. 288, No. 2, 2005, pp. 361-368. doi:10.1016/j.ijpharm.2004.10.009
[96] J. Cheng, B. A. Teply, I. Sherifi, J. Sung, G. Luther, F. X. Gu, E. Levy-Nissenbaum, A. F. Radovic-Moreno, R. Langer and O. C. Farokhzad, “Formulation of Functionalized PLGA-PEG Nanoparticles for in vivo Targeted Drug Delivery,” Biomaterials, Vol. 28, No. 5, 2007, pp. 869-876. doi:10.1016/j.biomaterials.2006.09.047
[97] S. Díez, G. Navarro and C. T. de ILarduya, “In vivo Targeted Gene Delivery by Cationic Nanoparticles for Treatment of Hepatocellular Carcinoma,” The Journal of Gene Medicine, Vol. 11, No. 1, 2009, pp. 38-45. doi:10.1002/jgm.1273
[98] G. Luo, X. Yu, C. Jin, F. Yang, D. Fu, J. Long, J. Xu, C. Zhan and W. Lu, “Lyp-1 Conjugated Nanoparticles for Targeting Drug Delivery to Lymphatic Metastatic Tumours,” International Journal of Pharmaceutics, Vol. 385, No.1-2, 2010, pp. 150-156. doi:10.1016/j.ijpharm.2009.10.014
[99] S. Gurunathan, K. J. Lee, K. Kalishwaralal, S. Sheikpranbabu, R. Vaidyanathan and S. H. Eom, “Antiangiogenic Properties of Silver Nanoparticles,” Biomaterials, Vol. 30, No. 31, 2009, pp. 6341-6350. doi:10.1016/j.biomaterials.2009.08.008
[100] R. Harfouche, S. Basu, S. Soni, D. M. Hentschel, R. A. Mashelkar and S. Sengupta, “Nanoparticles Mediated Targeting of Phosphatidylinositol-3-Kinase Signaling Inhibits Angiogenesis,” Angiogenesis, Vol. 12, No. 4, 2009, pp. 325-338. doi:10.1007/s10456-009-9154-4
[101] P. Singh, “Tumour Targeting Using Canine Parvovirus Nanoparticles,” Current Topics in Microbiology and Immunology, Vol. 327, 2009, pp. 123-141.
[102] G.W. Stone, S. Barzee, V. Snarsky, C. Santucci, B. Tran, R. Langer, G. T. Zugates, D. G. Anderson and R. S. Kornbluth, “Nanoparticle Delivered Multimeric Soluble CD40 LDNA Combined with Like Receptor Agonists as a Treatment for Melanoma,” PLOS One, Vol. 4, No. 10, 2009, p. 7334. doi:10.1371/journal.pone.0007334

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.