New Insight into the Graphene Based Films Prepared from Carbon Fibers
Yan-Xiang Wang, Wen-Xin Fan, Guo-Li Wang, Min-Xia Ji
DOI: 10.4236/msa.2011.27113   PDF    HTML     5,743 Downloads   10,314 Views   Citations

Abstract

In this work, ultrathin sections from longitudinal polyacrylonitrile (PAN) based T700 and T300 carbon fibers were prepared by ultramicrotomy, a promising graphene based thin films were developed in one step at ambient temperature. It is investigated that the network-graphene planes composed with carbon atoms are partly straight and partly twisted in the thin films prepared from T700 carbon fibers, the distance between the carbon atoms of network-graphene plane decreases, the order design of graphene in the films prepared from T700 carbon fibers is denser and its arrangement shows a preferred orientation along the drawing direction, its consistency of the neighboring graphene based planes is better, moreover, the relative content of the forming SP2-hybridized orbit of carbon atoms in the films prepared from T700 carbon fibers is higher, in the other words, the fact of the graphene based film prepared from carbon fibers without having the characteristic of skin-core structure has been verified.

Share and Cite:

Wang, Y. , Fan, W. , Wang, G. and Ji, M. (2011) New Insight into the Graphene Based Films Prepared from Carbon Fibers. Materials Sciences and Applications, 2, 833-837. doi: 10.4236/msa.2011.27113.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, “Graphene-Based Composite Materials,” Nature, Vol. 442, No. 7100, 2006, pp. 282-286. doi:10.1038/nature04969
[2] H. L. Chun, L. Li, F. M. Kin, W. F. George and F. H. Tony, “Ultraflat Grapheme,” Nature, Vol. 462, No. 7271, 2009, pp. 339-341. doi:10.1038/nature08569
[3] A. K. Geim, “Graphene: Status and Prospects,” Science, Vol. 324, No. 5934, 2009, pp. 1530-1534. doi:10.1126/science.1158877
[4] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth and S. Roth, “The Structure of Suspended Graphene Sheets,” Nature, Vol. 446, No. 7131, 2007, pp. 60-63. doi:10.1038/nature05545
[5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, Vol. 306, No. 5696, 2004, pp. 666-669. doi:10.1126/science.1102896
[6] T. Kyotani, N. Sonobe and A.Tomita, “Formation of Highly Orientated Graphite from Polyacrylonitrile by Using a Two-Dimensional Space between Montmorillo-nite Lamellae,” Nature, Vol. 331, No. 6154, 1988, pp. 331-333. doi:10.1038/331331a0
[7] G. Eda, G. Fanchini and M. Chhowalla. “Large-Area Ultrathin Films of Reduced Graphene Oxide as a Trans- parent and Flexible Electronic Material,” Nature Nano-technology, Vol. 3, No. 5, 2008, pp. 270-274. doi:10.1038/nnano.2008.83
[8] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S.T. Nguyen and R. S. Ruoff, “Preparation and Characterization of Graphene Oxide Paper,” Nature, Vol. 448, No. 7152, 2007, pp. 457- 460. doi:10.1038/nature06016
[9] L.Tapaszto, G. Dobrik, P. Lambin and L. P. Biro, “Tailoring the Atomic Structure of Graphene Nanoribbons by Scanning Tunnelling Microscope Lithography,” Nature Nanotechnology, Vol. 3, No. 7, 2008, pp. 397-401. doi:10.1038/nnano.2008.149
[10] C. M. Chen, Q. H. Yang, Y. G. Yang, W. Lv, Y. F. Wen, P. X. Hou, M. Z. Wang and H. M. Cheng, “Self-Assem- bled Free-Standing Graphite Oxide Membrane,” Advanced Materials, Vol. 21, 2009, pp. 3007-3011. doi:10.1002/adma.200990138
[11] L. Y. Jiao, X. R. Wang, G. Diankov, H.L. Wang and H. J. Dai, “Facile Synthesis of High-Quality Graphene Nanoribbons,” Nature Nanotechnology, Vol. 5, No. 5, 2010, pp. 321-325. doi:10.1038/nnano.2010.54
[12] L. J. Ci, L. Song, D. Jariwala, A. L. El?′as, W. Gao, M. Terrones, and P. M. Ajayan, “Graphene Shape Control by Multistage Cutting and Transfer,” Advanced Materials, Vol. 21, 2009, pp. 4487-4491. doi:10.1002/adma.200900942
[13] C. A. Di, D. C. Wei, G. Yu, Y. Q. Liu, Y. L. Guo and D. B. Zhu, “Patterned Graphene as Source/Drain Electrodes for Bottom Contact Organic Field-Effect Transistors,” Advanced Materials, Vol. 20, No. 17, 2008, pp. 3289-3293. doi:10.1002/adma.200800150
[14] X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. G. Wang and H. J. Dai, “Highly Conducting Graphene Sheets and Langmuir–Blodgett Films,” Nature Nanotechnology, Vol. 3, No. 9, 2008, pp. 538-542. doi:10.1038/nnano.2008.210
[15] L. Y. Jiao, L. Zhang, X. R. Wang, G. Diankov and H. J. Dai, “Narrow Graphene Nanoribbons from Carbon Nanotubes,” Nature, Vol. 458, No. 7240, 2009, pp. 877-880. doi:10.1038/nature07919
[16] G. Y. Zhang, P. F. Qi, X. R. Wang, Y. R. Lu, X. L. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang and H. J. Dai, “Selective Etching of Metallic Carbon Nanotubes by Gas-Phase Reaction,” Science, Vol. 314, 2006, pp. 974-976. doi:10.1126/science.1133781
[17] S. S. Datta, D. R. Strachan, S. M. Khamis and A. T. C. Johnson, “Crystallographic Etching of Few-Layer Graphene,” Nano Letter, Vol. 8, 2008, pp. 1912-1915. doi:10.1021/nl080583r
[18] Z. S. Wu, “Efficient Synthesis of Graphene Nanoribbons Sonochemically Cut from Graphene Sheets,” Nano Research, Vol. 3, No. 1, 2010, pp. 16-22.
[19] D. V. Kosynkin, “Longitudinal Unzipping of Carbon Nanotubes to form Graphene Nanoribbons,” Nature, Vol. 458, No. 7240, 2009, pp. 872-876. doi:10.1038/nature07872
[20] C. Lee, X. D. Wei, J. W. Kysar and J. Hone “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” Science, Vol. 321, 2008, pp. 385-389. doi:10.1126/science.1157996
[21] Y. J. Bai, C. G. Wang, N. Lun, Y. X. Wang, M. J. Yu and B. Zhu. “HRTEM Microstructures of PAN Precursor Fibers,” Carbon, Vol. 44, No. 9, 2006, pp. 1773-1778. doi:10.1016/j.carbon.2005.12.041
[22] Y. X. Wang and Q. Wang, “Evaluation of Carbonization Tar in Making High Performance Polyacrylonitrile-Based Carbon Fibers,” Journal of Applied Polymer Science, Vol. 104, 2007, pp. 1255-1259. doi:10.1002/app.25754
[23] R. Perret and W. Ruland, “The Microstructure of PAN-Base Carbon Fibres,” Journal of Applied Crystallo-graphy, Vol. 3, No. 6, 1970, pp. 525-532. doi:10.1107/S0021889870006805
[24] S. C. Bennet and D. J. Johnson, “Electron-Microscope Studies of Structural Heterogeneity in PAN-Based Carbon Fibres,” Carbon, Vol. 17, No. 1, 1979, pp. 25-39. doi:10.1016/0008-6223(79)90067-8
[25] H. Rennhofer, D. Loidl, S. Puchegger and H. Peterlik, “Structural Development of PAN-Based Carbon Fibers Studied by in Situ X-Ray Scattering at High Temperatures under Load,” Carbon, Vol. 48, No. 3, 2010, pp. 964-971. doi:10.1016/j.carbon.2009.11.012

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.