[1]
|
Kumar, R., Singh, S. and Singh, O. (2008) Bioconversion of Lignocellulosic Biomass: Biochemical and Molecular Perspectives. Journal of Industrial Microbiology & Biotechnology, 35, 377-391. http://dx.doi.org/10.1007/s10295-008-0327-8
|
[2]
|
Demain, A.L., Newcomb, M. and Wu, J.H.D. (2009) Cellulase, Clostridia, and Ethanol. Microbiology and Molecular Biology Reviews, 69, 124-154. http://dx.doi.org/10.1128/MMBR.69.1.124-154.2005
|
[3]
|
Sanchez, C. (2009) Lignocellulosic Residues: Biodegradation and Bioconversion by Fungi. Biotechnology Advances, 27, 185-194. http://dx.doi.org/10.1016/j.biotechadv.2008.11.001
|
[4]
|
Perez, J., Munoz-Dorado, J., de la Rubia, T. and Martinez, J. (2002) Biodegradation and Biological Treatments of Cellulose, Hemicellulose and Lignin: An Overview. International Microbiology, 5, 53-63. http://dx.doi.org/10.1007/s10123-002-0062-3
|
[5]
|
Howard, R.L., Abotis, E., van Rensburg, E.L. and Howard, S. (2003) Lignocellulose Biotechnology: Issues of Bioconversion and Enzyme Production. African Journal of Biotechnology, 2, 602-619. http://dx.doi.org/10.5897/AJB2003.000-1115
|
[6]
|
Malherbe, S. and Cloete, T.E. (2002) Lignocellulose Biodegradation: Fundamentals and Applications. Reviews in Environmental Science and Biotechnology, 1, 105-114. http://dx.doi.org/10.1023/A:1020858910646
|
[7]
|
Levine, J.S. (1996) Biomass Burning and Global Change. In: Levine, J.S., Ed., Remote Sensing and Inventory Development and Biomass burning in Africa, The MIT Press, Cambridge, 35.
|
[8]
|
Nanda, S., Mohammad, J., Reddy, S., Kozinski, J. and Dalai, A. (2014) Pathways of Lignocellulosic Biomass Conversion to Renewable Fuels. Biomass Conversion and Biorefinery, 4, 157-191. http://dx.doi.org/10.1007/s13399-013-0097-z
|
[9]
|
Horn, S., Vaaje-Kolstad, G., Westereng, B. and Eijsink, V.G.H. (2012) Novel Enzymes for the Degradation of Cellulose. Biotechnology for Biofuels, 5, 45. http://dx.doi.org/10.1186/1754-6834-5-45
|
[10]
|
Nanda, S., Mohanty, P., Pant, K., Naik, S., Kozinski, J. and Dalai, A. (2012) Characterization of North American Lignocellulosic Biomass and Biochars in Terms of Their Candidacy for Alternate Renewable Fuels. Bioenergy Research, 6, 663-677. http://dx.doi.org/10.1007/s12155-012-9281-4
|
[11]
|
Rosa Estela, Q.-C.E. and Luis, F.-M.J. (2013) Hydrolysis of Biomass Mediated by Cellulases for the Production of Sugars. In: Chandel, A.K. and da Silva, S.S., Eds., Sustainable Degradation of Lignocellulosic Biomass-Techniques, Applications and Commercialization, InTech, Rijeka, Croatia, 119-155. http://dx.doi.org/10.5772/53719
|
[12]
|
Bridgeman, T.G., Jones, J.M. Shield, I. and Williams, P.T. (2008) Torrefaction of Reed Canary Grass, Wheat Straw and Willow to Enhance Solid Fuel Qualities and Combustion Properties. Fuel, 87, 844-856. http://dx.doi.org/10.1016/j.fuel.2007.05.041
|
[13]
|
Okeke, B.C. and Obi, S.K.C. (1994) Lignocellulose and Sugar Compositions of Some Agro-Waste Materials. Bioresource Technology, 47, 283-284. http://dx.doi.org/10.1016/0960-8524(94)90192-9
|
[14]
|
Li, H., Kim, N.J., Jiang, M., Kang, J.W. and Chang, H.N. (2009) Simultaneous Saccharification and Fermentation of Lignocellulosic Residues Pretreated with Phosphoric Acid-Acetone for Bioethanol Production. Bioresource Technology, 100, 3245-3251. http://dx.doi.org/10.1016/j.biortech.2009.01.021
|
[15]
|
Naik, S., Goud, V.V., Rout, P.K., Jacobson, K. and Dalai, A.K. (2010) Characterization of Canadian Biomass for Alternative Renewable Biofuel. Renewable Energy, 35, 1624-1631. http://dx.doi.org/10.1016/j.renene.2009.08.033
|
[16]
|
Rowell, R.M. (1992) Opportunities for Lignocellulosic Materials and Composites. In: Rowell, R.M., Schultz, T.P. and Narayan, R., Eds., Emerging Technologies for Materials and Chemicals from Biomass, American Chemical Society, Washington DC, 12-27. http://dx.doi.org/10.1021/bk-1992-0476.ch002
|
[17]
|
Ilyas, U., Ahmed, S., Majeed, A. and Nadeem, M. (2012) Exploration of Indigenous Agrowastes for Cellulase Production by Aspergillus niger. African Journal of Biotechnology, 11, 9276-9279.
|
[18]
|
Prasad, S., Singh, A. and Joshi, H.C. (2007) Ethanol as an Alternative Fuel from Agricultural, Industrial and Urban Residues. Resources, Conservation and Recycling, 50, 1-39. http://dx.doi.org/10.1016/j.resconrec.2006.05.007
|
[19]
|
Raveendran, K., Ganesh, A. and Khilar, K.C. (1995) Influence of Mineral Matter on Biomass Pyrolysis Characteristics. Fuel, 74, 1812-1822. http://dx.doi.org/10.1016/0016-2361(95)80013-8
|
[20]
|
Kim, T.H., Kim, J.S., Sunwoo, C. and Lee, Y.Y. (2003) Pretreatment of Corn Stover by Aqueous Ammonia. Bioresource Technology, 90, 39-47. http://dx.doi.org/10.1016/S0960-8524(03)00097-X
|
[21]
|
Merino, S. and Cherry, J. (2007) Progress and Challenges in Enzyme Development for Biomass Utilization. In: Olsson, L., Ed., Biofuels, Springer Berlin Heidelberg, 95-120. http://dx.doi.org/10.1007/10_2007_066
|
[22]
|
Ballesteros, M., Oliva, J.M., Negro, M.J., Manzanares, P. and Ballesteros, I. (2004) Ethanol from Lignocellulosic Materials by a Simultaneous Saccharification and Fermentation Process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry, 39, 1843-1848. http://dx.doi.org/10.1016/j.procbio.2003.09.011
|
[23]
|
Tang, J., Chen, K., Huang, F., Xu, J. and Li, J. (2013) Characterization of the Pretreatment Liquor of Biomass from the Perennial Grass, Eulaliopsis binata, for the Production of Dissolving Pulp. Bioresource Technology, 129, 548-552. http://dx.doi.org/10.1016/j.biortech.2012.11.096
|
[24]
|
Lee, J. (1997) Biological Conversion of Lignocellulosic Biomass to Ethanol. Journal of Biotechnology, 56, 1-24. http://dx.doi.org/10.1016/S0168-1656(97)00073-4
|
[25]
|
Ferreira-Leitao, V., Perrone, C.C., Rodrigues, J., Franke, A.P.M., Macrelli, S. and Zacchi, G. (2010) An Approach to the Utilisation of CO2 as Impregnating Agent in Steam Pretreatment of Sugar Cane Bagasse and Leaves for Ethanol Production. Biotechnology for Biofuels, 3, 7. http://dx.doi.org/10.1186/1754-6834-3-7
|
[26]
|
Mansoer, Z., Reeves, D.W. and Wood, C.W. (1997) Suitability of Sunn Hemp as an Alternative Late-Summer Legume Cover Crop. Soil Science Society of America Journal, 61, 246-253. http://dx.doi.org/10.2136/sssaj1997.03615995006100010034x
|
[27]
|
Kabel, M.A., van der Maarel, M.J.E.C., Klip, G., Voragen, A.G.J. and Schols, H.A. (2006) Standard Assays Do Not Predict the Efficiency of Commercial Cellulase Preparations towards Plant Materials. Biotechnology and Bioengineering, 93, 56-63. http://dx.doi.org/10.1002/bit.20685
|
[28]
|
Hendriks, A.T.W.M. and Zeeman, G. (2009) Pretreatments to Enhance the Digestibility of Lignocellulosic Biomass. Bioresource Technology, 100, 10-18. http://dx.doi.org/10.1016/j.biortech.2008.05.027
|
[29]
|
Singhania, R.R., Sukumaran, R.K., Patel, A.K., Larroche, C. and Pandey, A. (2010) Advancement and Comparative Profiles in the Production Technologies Using Solid-State and Submerged Fermentation for Microbial Cellulases. Enzyme and Microbial Technology, 46, 541-549. http://dx.doi.org/10.1016/j.enzmictec.2010.03.010
|
[30]
|
Agbor, V.B., Cicek, N., Sparling, R., Berlin, A. and Levin, D.B. (2011) Biomass Pretreatment: Fundamentals toward Application. Biotechnology Advances, 29, 675-685. http://dx.doi.org/10.1016/j.biotechadv.2011.05.005
|
[31]
|
Van Dyk, J.S. and Pletschke, B.I. (2012) A Review of Lignocellulose Bioconversion Using Enzymatic Hydrolysis and Synergistic Cooperation between Enzymes-Factors Affecting Enzymes, Conversion and Synergy. Biotechnology Advances, 30, 1458-1480. http://dx.doi.org/10.1016/j.biotechadv.2012.03.002
|
[32]
|
Eriksson, K.-E.L. and Bermek, H. (2009) Lignin, Lignocellulose, Ligninase. Applied Microbiololgy Industrial, 373-384.
|
[33]
|
Juturu, V. and Wu, J.C. (2012) Microbial Xylanases: Engineering, Production and Industrial Applications. Biotechnology Advances, 30, 1219-1227. http://dx.doi.org/10.1016/j.biotechadv.2011.11.006
|
[34]
|
Beg, Q.K., Kapoor, M., Mahajan, L. and Hoondal, G.S. (2001) Microbial Xylanases and Their Industrial Applications: A Review. Applied Microbiology and Biotechnology, 56, 326-338. http://dx.doi.org/10.1007/s002530100704
|
[35]
|
Collins, T., Gerday, C. and Feller, G. (2005) Xylanases, Xylanase Families and Extremophilic Xylanases. FEMS Microbiology Reviews, 29, 3-23. http://dx.doi.org/10.1016/j.femsre.2004.06.005
|
[36]
|
Prade, R.A. (1996) Xylanases: From Biology to Biotechnology. Biotechnology and Genetic Engineering Reviews, 13, 101-132. http://dx.doi.org/10.1080/02648725.1996.10647925
|
[37]
|
Bastawde, K.B. (1992) Xylan Structure, Microbial Xylanases, and Their Mode of Action. World Journal of Microbiology and Biotechnology, 8, 353-368. http://dx.doi.org/10.1007/BF01198746
|
[38]
|
Uffen, R.L. (1997) Xylan Degradation: A Glimpse at Microbial Diversity. Journal of Industrial Microbiology and Biotechnology, 19, 1-6. http://dx.doi.org/10.1038/sj.jim.2900417
|
[39]
|
Shahzadi, T., Mehmood, S., Irshad, M., Anwar, Z., Afroz, A., Zeeshan, N., Rashid, U. and Sughra, K. (2014) Advances in Lignocellulosic Biotechnology: A Brief Review on Lignocellulosic Biomass and Cellulases. Advances in Bioscience and Biotechnology, 5, 246-251. http://dx.doi.org/10.4236/abb.2014.53031
|
[40]
|
Mussatto, S.I. and Teixeira, J.A. (2010) Lignocellulose as Raw Material in Fermentation Processes. In: Mendez-Vilas, A., Ed., Current Research, Technology and Education, Topics in Applied Microbiology and Microbial Biotechnology, Formatex Research Center, Badajoz, 897-907.
|
[41]
|
Zhao, X., Zhang, L. and Liu, D. (2012) Biomass Recalcitrance Part I: The Chemical Compositions and Physical Structures Affecting the Enzymatic Hydrolysis of Lignocellulose. Biofuels, Bioproducts and Biorefining, 6, 465-482. http://dx.doi.org/10.1002/bbb.1331
|
[42]
|
Nascimento, M.S., Santana, A.L.B.D., Maranhão, C.A., Oliveira, L.S. and Bieber, L. (2013) Phenolic Extractives and Natural Resistance of Wood. In: Chamy, R. and Rosenkranz, F., Eds., Biodegradation-Life of Science, InTech, Rijeka, Croatia, 349-370.
|
[43]
|
Coombs, J., Lynch, J.M., Levy, J.F. and Gascoigne, J.A. (1987) EEC Resources and Strategies and Discussion. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 321, 405-422. http://dx.doi.org/10.1098/rsta.1987.0019
|
[44]
|
Oberoi, H.S., Vadlani, P.V., Brijwani, K., Bhargav, V.K. and Patil, R.T. (2010) Enhanced Ethanol Production via Fermentation of Rice Straw with Hydrolysate-Adapted Candida tropicalis ATCC 13803. Process Biochemistry, 45, 1299-1306. http://dx.doi.org/10.1016/j.procbio.2010.04.017
|
[45]
|
Buaban, B., Inoue, H., Yano, S., Tanapongpipat, S., Ruanglek, V., Champreda, V., Pichyangkura, R., Rengpipat, S. and Eurwilaichitr, L. (2010) Bioethanol Production from Ball Milled Bagasse Using an On-Site Produced Fungal Enzyme Cocktail and Xylose-Fermenting Pichia stipitis. Journal of Bioscience and Bioengineering, 110, 18-25. http://dx.doi.org/10.1016/j.jbiosc.2009.12.003
|
[46]
|
Amiri, H., Karimi, K. and Zilouei, H. (2014) Organosolv Pretreatment of Rice Straw for Efficient Acetone, Butanol, and Ethanol Production. Bioresource Technology, 152, 450-456. http://dx.doi.org/10.1016/j.biortech.2013.11.038
|
[47]
|
Al-Shorgani, N., Kalil, M. and Yusoff, W. (2012) Biobutanol Production from Rice Bran and De-Oiled Rice Bran by Clostridium saccharoperbutylacetonicum N1-4. Bioprocess and Biosystems Engineering, 35, 817-826. http://dx.doi.org/10.1007/s00449-011-0664-2
|
[48]
|
Qureshi, N., Singh, V., Liu, S., Ezeji, T.C., Saha, B.C. and Cotta, M.A. (2014) Process Integration for Simultaneous Saccharification, Fermentation, and Recovery (SSFR): Production of Butanol from Corn Stover Using Clostridium beijerinckii P260. Bioresource Technology, 154, 222-228. http://dx.doi.org/10.1016/j.biortech.2013.11.080
|
[49]
|
Lai, Z., Zhu, M., Yang, X., Wang, J. and Li, S. (2014) Optimization of Key Factors Affecting Hydrogen Production from Sugarcane Bagasse by a Thermophilic Anaerobic Pure Culture. Biotechnology for Biofuels, 7, 119. http://dx.doi.org/10.1186/s13068-014-0119-5
|
[50]
|
Kim, M., Yang, Y., Morikawa-Sakura, M.S., Wang, Q., Lee, M.V., Lee, D.-Y., Feng, C., Zhou, Y. and Zhang, Z. (2012) Hydrogen Production by Anaerobic Co-Digestion of Rice Straw and Sewage Sludge. International Journal of Hydrogen Energy, 37, 3142-3149. http://dx.doi.org/10.1016/j.ijhydene.2011.10.116
|
[51]
|
Song, Z., Yang, G., Han, X., Feng, Y. and Ren, G. (2013) Optimization of the Alkaline Pretreatment of Rice Straw for Enhanced Methane Yield. BioMed Research International, 2013, Article ID: 968692. http://dx.doi.org/10.1155/2013/968692
|
[52]
|
Lei, Z., Chen, J., Zhang, Z. and Sugiura, N. (2010) Methane Production from Rice Straw with Acclimated Anaerobic Sludge: Effect of Phosphate Supplementation. Bioresource Technology, 101, 4343-4348. http://dx.doi.org/10.1016/j.biortech.2010.01.083
|
[53]
|
Monlau, F., Barakat, A., Steyer, J.P. and Carrere, H. (2012) Comparison of Seven Types of Thermo-Chemical Pretreatments on the Structural Features and Anaerobic Digestion of Sunflower Stalks. Bioresource Technology, 120, 241-247. http://dx.doi.org/10.1016/j.biortech.2012.06.040
|
[54]
|
Deng, W., Zhang, Q. and Wang, Y. (2014) Catalytic Transformations of Cellulose and Cellulose-Derived Carbohydrates into Organic Acids. Catalysis Today, 234, 31-41. http://dx.doi.org/10.1016/j.cattod.2013.12.041
|
[55]
|
Jönsson, L.J., Alriksson, B. and Nilvebrant, N.-O. (2013) Bioconversion of Lignocellulose: Inhibitors and Detoxification. Biotechnology for Biofuels, 6, 16. http://dx.doi.org/10.1186/1754-6834-6-16
|
[56]
|
Kumar, A. and Jain, V.K. (2008) Solid State Fermentation Studies of Citric Acid Production. African Journal of Biotechnology, 7, 644-650. http://www.academicjournals.org/AJB
|
[57]
|
Khosravi-Darani, K. and Zoghi, A. (2008) Comparison of Pretreatment Strategies of Sugarcane Baggase: Experimental Design for Citric Acid Production. Bioresource Technology, 99, 6986-6993. http://dx.doi.org/10.1016/j.biortech.2008.01.024
|
[58]
|
Wang, G., Huang, D., Li, Y., Wen, J. and Jia, X. (2015) A Metabolic-Based Approach to Improve Xylose Utilization for Fumaric Acid Production from Acid Pretreated Wheat Bran by Rhizopus oryzae. Bioresource Technology, 180, 119-127. http://dx.doi.org/10.1016/j.biortech.2014.12.091
|
[59]
|
Tirpanalan, &OUML., Reisinger, M., Smerilli, M., Huber, F., Neureiter, M., Kneifel, W. and Novalin, S. (2015) Wheat Bran Biorefinery—An Insight into the Process Chain for the Production of Lactic Acid. Bioresource Technology, 180, 242-249. http://dx.doi.org/10.1016/j.biortech.2015.01.021
|
[60]
|
Carvalho, W., Silva, S.S., Vitolo, M., Felipe, M.G. and Mancilha, I.M. (2002) Improvement in Xylitol Production from Sugarcane Bagasse Hydrolysate Achieved by the Use of a Repeated-Batch Immobilized Cell System. Zeitschrift für Naturforschung C, 57, 109-112. http://dx.doi.org/10.1515/znc-2002-1-219
|
[61]
|
Urbaniec, K. and Bakker, R.R. (2015) Biomass Residues as Raw Material for Dark Hydrogen Fermentation—A Review. International Journal of Hydrogen Energy, 40, 3648-3658. http://dx.doi.org/10.1016/j.ijhydene.2015.01.073
|
[62]
|
Pathak, P. Bhardwaj, N. and Singh, A. (2014) Production of Crude Cellulase and Xylanase from Trichoderma harzianum PPDDN10 NFCCI-2925 and Its Application in Photocopier Waste Paper Recycling. Applied Biochemistry and Biotechnology, 172, 3776-3797. http://dx.doi.org/10.1007/s12010-014-0758-9
|
[63]
|
Singh, S., Tyagi, C.H., Dutt, D. and Upadhyaya, J.S. (2009) Production of High Level of Cellulase-Poor Xylanases by Wild Strains of White-Rot Fungus Coprinellus disseminatus in Solid-State Fermentation. New Biotechnology, 26, 165-170. http://dx.doi.org/10.1016/j.nbt.2009.09.004
|
[64]
|
Dutt, D., Tyagi, C.H., Singh, R.P., Gautam, A., Agnohotri, S. and Kumar, A. (2013) Isolation and Biochemical Characterization of Crude Xylanase from Coprinus cinereus AT-1 MTCC 9695 and Its Effectiveness in Biodeinking of SOP. Cellulose Chemistry and Technology, 47, 203-217. http://www.cellulosechemtechnol.ro/pdf/CCT3-4(2013)/p.203-217.pdf
|
[65]
|
Songulashvili, G., Spindler, D., Jimenéz-Tobón, G.A., Jaspers, C., Kerns, G. and Penninckx, M.J. (2015) Production of a High Level of Laccase by Submerged Fermentation at 120-L Scale of Cerrena unicolor C-139 Grown on Wheat Bran. Comptes Rendus Biologies, 338, 121-125. http://dx.doi.org/10.1016/j.crvi.2014.12.001
|
[66]
|
Singh, S., Singh, S., Bali, V., Sharma, L. and Mangla, J. (2014) Production of Fungal Amylases Using Cheap, Readily Available Agriresidues, for Potential Application in Textile Industry. BioMed Research International, 2014, Article ID: 215748. http://dx.doi.org/10.1155/2014/215748
|
[67]
|
Falony, G., Armas, J.C., Mendoza, J.C.D. and Martínez Hernández, J.L. (2006) Production of Extracellular Lipase from Aspergillus niger by Solid-State Fermentation. Food Technology and Biotechnology, 44, 235-240. http://www.ftb.com.hr/images/pdfarticles/2006/April-June/44-235.pdf
|
[68]
|
Pan, C., Fan, Y. and Hou, H. (2008) Fermentative Production of Hydrogen from Wheat Bran by Mixed Anaerobic Cultures. Industrial & Engineering Chemistry Research, 47, 5812-5818. http://dx.doi.org/10.1021/ie701789c
|
[69]
|
Kalogeris, E., Iniotaki, F., Topakas, E., Christakopoulos, P., Kekos, D. and Macris, B.J. (2003) Performance of an Intermittent Agitation Rotating Drum Type Bioreactor for Solid-State Fermentation of Wheat Straw. Bioresource Technology, 86, 207-213. http://dx.doi.org/10.1016/S0960-8524(02)00175-X
|
[70]
|
Qureshi, N., Saha, B.C. and Cotta, M.A. (2008) Butanol Production from Wheat Straw by Simultaneous Saccharification and Fermentation Using Clostridium beijerinckii: Part II—Fed-Batch Fermentation. Biomass and Bioenergy, 32, 176-183. http://dx.doi.org/10.1016/j.biombioe.2007.07.005
|
[71]
|
Chandra, R., Takeuchi, H., Hasegawa, T. and Kumar, R. (2012) Improving Biodegradability and Biogas Production of Wheat Straw Substrates Using Sodium Hydroxide and Hydrothermal Pretreatments. Energy, 43, 273-282. http://dx.doi.org/10.1016/j.energy.2012.04.029
|
[72]
|
Soni, R., Nazir, A. and Chadha, B.S. (2010) Optimization of Cellulase Production by a Versatile Aspergillus fumigatus Fresenius Strain (AMA) Capable of Efficient Deinking and Enzymatic Hydrolysis of Solka Floc and Bagasse. Industrial Crops and Products, 31, 277-283. http://dx.doi.org/10.1016/j.indcrop.2009.11.007
|
[73]
|
Zhang, Q. and Cai, W. (2008) Enzymatic Hydrolysis of Alkali-Pretreated Rice Straw by Trichoderma reesei ZM4-F3. Biomass and Bioenergy, 32, 1130-1135. http://dx.doi.org/10.1016/j.biombioe.2008.02.006
|
[74]
|
Rocky-Salimi, K. and Hamidi-Esfahani, Z. (2010) Evaluation of the Effect of Particle Size, Aeration Rate and Harvest Time on the Production of Cellulase by Trichoderma reesei QM9414 Using Response Surface Methodology. Food and Bioproducts Processing, 88, 61-66. http://dx.doi.org/10.1016/j.fbp.2009.06.006
|
[75]
|
Melzoch, K., Votruba, J., Hábová, V. and Rychtera, M.R. (1997) Lactic Acid Production in a Cell Retention Continuous Culture Using Lignocellulosic Hydrolysate as a Substrate. Journal of Biotechnology, 56, 25-31. http://dx.doi.org/10.1016/S0168-1656(97)00074-6
|
[76]
|
Singh, A., Bajar, S. and Bishnoi, N.R. (2014) Enzymatic Hydrolysis of Microwave Alkali Pretreated Rice Husk for Ethanol Production by Saccharomyces cerevisiae, Scheffersomyces stipitis and Their Co-Culture. Fuel, 116, 699-702. http://dx.doi.org/10.1016/j.fuel.2013.08.072
|
[77]
|
Rambo, M.K.D., Bevilaqua, D.B., Brenner, C.G.B., Martins, A.F., Mario, D.N., Alves, S.H. and Mallmann, C.A. (2013) Xylitol from Rice Husks by Acid Hydrolysis and Candida Yeast Fermentation. Química Nova, 36, 634-639. http://dx.doi.org/10.1590/S0100-40422013000500004
|
[78]
|
Xia, L.M. and Shen, X.L. (2004) High-Yield Cellulase Production by Trichoderma reesei ZU-02 on Corn Cob Residue. Bioresource Technology, 91, 259-262. http://dx.doi.org/10.1016/S0960-8524(03)00195-0
|
[79]
|
Guo, X., Zhang, R., Li, Z., Dai, D., Li, C. and Zhou, X. (2013) A Novel Pathway Construction in Candida tropicalis for Direct Xylitol Conversion from Corncob Xylan. Bioresource Technology, 128, 547-552. http://dx.doi.org/10.1016/j.biortech.2012.10.155
|
[80]
|
Panagiotopoulos, I.A., Bakker, R.R., de Vrije, T., Koukios, E.G. and Claassen, P.A.M. (2010) Pretreatment of Sweet Sorghum Bagasse for Hydrogen Production by Caldicellulosiruptor saccharolyticus. International Journal of Hydrogen Energy, 35, 7738-7747. http://dx.doi.org/10.1016/j.ijhydene.2010.05.075
|
[81]
|
Mamma, D., Kourtoglou, E. and Christakopoulos, P. (2008) Fungal Multienzyme Production on Industrial By-Products of the Citrus-Processing Industry. Bioresource Technology, 99, 2373-2383. http://dx.doi.org/10.1016/j.biortech.2007.05.018
|
[82]
|
Pan, C.-M., Ma, H.-C., Fan, Y.-T. and Hou, H.-W. (2011) Bioaugmented Cellulosic Hydrogen Production from Cornstalk by Integrating Dilute Acid-Enzyme Hydrolysis and Dark Fermentation. International Journal of Hydrogen Energy, 36, 4852-4862. http://dx.doi.org/10.1016/j.ijhydene.2011.01.114
|
[83]
|
Zhu, J., Wan, C. and Li, Y. (2010) Enhanced Solid-State Anaerobic Digestion of Corn Stover by Alkaline Pretreatment. Bioresource Technology, 101, 7523-7528. http://dx.doi.org/10.1016/j.biortech.2010.04.060
|
[84]
|
Song, Z., Yang, G.H., Liu, X., Yan, Z., Yuan, Y. and Liao, Y. (2014) Comparison of Seven Chemical Pretreatments of Corn Straw for Improving Methane Yield by Anaerobic Digestion. PLoS ONE, 9, e93801. http://dx.doi.org/10.1371/journal.pone.0093801
|
[85]
|
Mekala, N., Singhania, R., Sukumaran, R. and Pandey, A. (2008) Cellulase Production under Solid-State Fermentation by Trichoderma reesei RUT C30: Statistical Optimization of Process Parameters. Applied Biochemistry and Biotechnology, 151, 122-131. http://dx.doi.org/10.1007/s12010-008-8156-9
|
[86]
|
Farinas, C.S., Vitcosque, G.L., Fonseca, R.F., Neto, V.B. and Couri, S. (2011) Modeling the Effects of Solid State Fermentation Operating Conditions on Endoglucanase Production Using an Instrumented Bioreactor. Industrial Crops and Products, 34, 1186-1192. http://dx.doi.org/10.1016/j.indcrop.2011.04.006
|
[87]
|
Marques, S., Alves, L., Roseiro, J.C. and Gírio, F.M. (2008) Conversion of Recycled Paper Sludge to Ethanol by SHF and SSF Using Pichia stipitis. Biomass and Bioenergy, 32, 400-406. http://dx.doi.org/10.1016/j.biombioe.2007.10.011
|
[88]
|
Budhavaram, N.K. and Fan, Z. (2009) Production of lactic acid from Paper Sludge Using Acid-Tolerant, Thermophilic Bacillus coagulan Strains. Bioresource Technology, 100, 5966-5972. http://dx.doi.org/10.1016/j.biortech.2009.01.080
|
[89]
|
Lin, Y., Wang, D., Wu, S. and Wang, C. (2009) Alkali Pretreatment Enhances Biogas Production in the Anaerobic Digestion of Pulp and Paper Sludge. Journal of Hazardous Materials, 170, 366-373. http://dx.doi.org/10.1016/j.jhazmat.2009.04.086
|
[90]
|
Sharma, S.K., Kalra, K.L. and Kocher, G.S. (2004) Fermentation of Enzymatic Hydrolysate of Sunflower Hulls for Ethanol Production and Its Scale-Up. Biomass and Bioenergy, 27, 399-402. http://dx.doi.org/10.1016/j.biombioe.2004.03.005
|
[91]
|
Nigam, J.N. (2002) Bioconversion of Water-Hyacinth (Eichhornia crassipes) Hemicellulose Acid Hydrolysate to Motor Fuel Ethanol by Xylose-Fermenting Yeast. Journal of Biotechnology, 97, 107-116. http://dx.doi.org/10.1016/S0168-1656(02)00013-5
|
[92]
|
Aswathy, U.S., Sukumaran, R.K., Devi, G.L., Rajasree, K.P., Singhania, R.R. and Pandey, A. (2010) Bio-Ethanol from Water Hyacinth Biomass: An Evaluation of Enzymatic Saccharification Strategy. Bioresource Technology, 101, 925-930. http://dx.doi.org/10.1016/j.biortech.2009.08.019
|
[93]
|
Chandel, A.K., Antunes, F.A.F., de Arruda, P.V., Milessi, T.S.S., da Silva, S.S. and Felipe, M. das G. de A. (2012) Dilute Acid Hydrolysis of Agro-Residues for the Depolymerization of Hemicellulose: State-of-the-Art. In: da Silva, S.S. and Chandel, A.K., Eds., D-Xylitol, Springer Berlin Heidelberg, 39-61.
|
[94]
|
Chandel, A.K., da Silva, S.S., Carvalho, W. and Singh, O.V. (2012) Sugarcane Bagasse and Leaves: Foreseeable Biomass of Biofuel and Bio-Products. Journal of Chemical Technology & Biotechnology, 87, 11-20. http://dx.doi.org/10.1002/jctb.2742
|
[95]
|
EIA (2013) International Energy Outlook 2013. U.S. Energy Information Administration, DOE/EIA-0484 (2013). http://www.eia.gov/forecasts/ieo/pdf/0484(2013).pdf
|
[96]
|
Garoma, T. and Shackelford, T. (2014) Electroporation of Chlorella vulgaris to Enhance Biomethane Production. Bioresource Technology, 169, 778-783. http://dx.doi.org/10.1016/j.biortech.2014.07.001
|
[97]
|
Chandel, A.K., Singh, O.V., Venkateswar Rao, L., Chandrasekhar, G. and Lakshmi Narasu, M. (2011) Bioconversion of Novel Substrate Saccharum spontaneum, a Weedy Material, into Ethanol by Pichia stipitis NCIM3498. Bioresource Technology, 102, 1709-1714. http://dx.doi.org/10.1016/j.biortech.2010.08.016
|
[98]
|
Kerr, R.A. and Service, R.F. (2005) What Can Replace Cheap Oil—and When? Science, 309, 101. http://dx.doi.org/10.1126/science.309.5731.101
|
[99]
|
Agbor, V.B., Cicek, N., Sparling, R., Berlin, A. and Levin, D.B. (2011) Biomass Pretreatment: Fundamentals toward Application. Biotechnology Advances, 29, 675-685. http://dx.doi.org/10.1016/j.biotechadv.2011.05.005
|
[100]
|
Gil, N., Ferreira, S., Amaral, M.E., Domingues, F.C. and Duarte, A.P. (2010) The Influence of Dilute Acid Pretreatment Conditions on the Enzymatic Saccharification of Erica spp. for Bioethanol Production. Industrial Crops and Products, 32, 29-35. http://dx.doi.org/10.1016/j.indcrop.2010.02.013
|
[101]
|
Gupta, A. and Verma, J.P. (2015) Sustainable Bio-Ethanol Production from Agro-Residues: A Review. Renewable and Sustainable Energy Reviews, 41, 550-567. http://dx.doi.org/10.1016/j.rser.2014.08.032
|
[102]
|
Nikolic, S., Mojovic, L., Rakin, M. and Pejin, D. (2009) Bioethanol Production from Corn Meal by Simultaneous Enzymatic Saccharification and Fermentation with Immobilized Cells of Saccharomyces cerevisiae var. ellipsoideus. Fuel, 88, 1602-1607. http://dx.doi.org/10.1016/j.fuel.2008.12.019
|
[103]
|
Guimaraes, P.M.R., Teixeira, J.A. and Domingues, L. (2010) Fermentation of Lactose to Bio-Ethanol by Yeasts as Part of Integrated Solutions for the Valorisation of Cheese Whey. Biotechnology Advances, 28, 375-384. http://dx.doi.org/10.1016/j.biotechadv.2010.02.002
|
[104]
|
Watanabe, I., Nakamura, T. and Shima, J. (2009) Characterization of a Spontaneous Flocculation Mutant Derived from Candida glabrata: A Useful Strain for Bioethanol Production. Journal of Bioscience and Bioengineering, 107, 379-382. http://dx.doi.org/10.1016/j.jbiosc.2008.12.002
|
[105]
|
Das, A., Paul, T., Jana, A., Halder, S.K., Ghosh, K., Maity, C., Mohapatra, P.K.D., Pati, B.R. and Mondal, K.C. (2013) Bioconversion of Rice Straw to Sugar Using Multizyme Complex of Fungal Origin and Subsequent Production of Bioethanol by Mixed Fermentation of Saccharomyces cerevisiae MTCC 173 and Zymomonas mobilis MTCC 2428. Industrial Crops and Products, 46, 217-225. http://dx.doi.org/10.1016/j.indcrop.2013.02.003
|
[106]
|
Boluda-Aguilar, M. and Lopez-Gomez, A. (2013) Production of Bioethanol by Fermentation of Lemon (Citrus limon L.) Peel Wastes Pretreated with Steam Explosion. Industrial Crops and Products, 41, 188-197. http://dx.doi.org/10.1016/j.indcrop.2012.04.031
|
[107]
|
Whitfield, M.B., Chinn, M.S. and Veal, M.W. (2012) Processing of Materials Derived from Sweet Sorghum for Biobased Products. Industrial Crops and Products, 37, 362-375. http://dx.doi.org/10.1016/j.indcrop.2011.12.011
|
[108]
|
Sukumaran, R.K., Singhania, R.R., Mathew, G.M. and Pandey, A. (2009) Cellulase Production Using Biomass Feed Stock and Its Application in Lignocellulose Saccharification for Bio-Ethanol Production. Renewable Energy, 34, 421-424. http://dx.doi.org/10.1016/j.renene.2008.05.008
|
[109]
|
Roberto, I.S.C., Mussatto, S.I. and Rodrigues, R.C.L.B. (2003) Dilute-Acid Hydrolysis for Optimization of Xylose Recovery from Rice Straw in a Semi-Pilot Reactor. Industrial Crops and Products, 17, 171-176. http://dx.doi.org/10.1016/S0926-6690(02)00095-X
|
[110]
|
Karim, R., Hussain, A. and Mohd Zain, A. (2014) Production of Bioethanol from Empty Fruit Bunches Cellulosic Biomass and Avicel PH-101 Cellulose. Biomass Conversion and Biorefinery, 4, 333-340. http://dx.doi.org/10.1007/s13399-014-0117-7
|
[111]
|
Al-Shorgani, N.K.N., Shukor, H., Abdeshahian, P., Mohd Nazir, M.Y., Kalil, M.S., Hamid, A.A. and Wan Yusoff, W.M. (2015) Process Optimization of Butanol Production by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) Using Palm Oil Mill Effluent in Acetone-Butanol-Ethanol Fermentation. Biocatalysis and Agricultural Biotechnology, 4, 244-249. http://dx.doi.org/10.1016/j.bcab.2015.02.004
|
[112]
|
Al-Shorgani, N.K., Abdul Hamid, A., Wan Yusoff, W.M and Kalil, M.S. (2013) Pre-Optimization of Medium for Biobutanol Production by a New Isolate of Solvent-Producing Clostridium. BioResources, 8, 1420-1430. http://dx.doi.org/10.15376/biores.8.1.1420-1430
|
[113]
|
Green, E.M. (2011) Fermentative Production of Butanol—The Industrial Perspective. Current Opinion in Biotechnology, 22, 337-343. http://dx.doi.org/10.1016/j.copbio.2011.02.004
|
[114]
|
Zheng, J., Tashiro, Y., Wang, Q. and Sonomoto, K. (2015) Recent Advances to Improve Fermentative Butanol Production: Genetic Engineering and Fermentation Technology. Journal of Bioscience and Bioengineering, 119, 1-9. http://dx.doi.org/10.1016/j.jbiosc.2014.05.023
|
[115]
|
Chen, W.-H., Chen, Y.-C. and Lin, J.-G. (2013) Evaluation of Biobutanol Production from Non-Pretreated Rice Straw Hydrolysate under Non-Sterile Environmental Conditions. Bioresource Technology, 135, 262-268. http://dx.doi.org/10.1016/j.biortech.2012.10.140
|
[116]
|
Shukor, H., Al-Shorgani, N.K., Abdeshahian, N.P., Hamid, A.A., Anuar, N., Rahman, N.A. and Kalil, M.S. (2014) Production of Butanol by Clostridium saccharoperbutylacetonicum N1-4 from Palm Kernel Cake in Acetone-Butanol-Ethanol Fermentation Using an Empirical Model. Bioresource Technology, 170, 565-573. http://dx.doi.org/10.1016/j.biortech.2014.07.055
|
[117]
|
Mayer, F., Gerin, P.A., Noo, A., Foucart, G., Flammang, J., Lemaigre, S., Sinnaeve, G., Dardenne, P. and Delfosse, P. (2014) Assessment of Factors Influencing the Biomethane Yield of Maize Silages. Bioresource Technology, 153, 260-268. http://dx.doi.org/10.1016/j.biortech.2013.11.081
|
[118]
|
Zheng, Y., Zhao, J., Xu, F. and Li, Y. (2014) Pretreatment of Lignocellulosic Biomass for Enhanced Biogas Production. Progress in Energy and Combustion Science, 42, 35-53. http://dx.doi.org/10.1016/j.pecs.2014.01.001
|
[119]
|
Patterson, T., Esteves, S., Dinsdale, R., Guwy, A. and Maddy, J. (2013) Life Cycle Assessment of Biohydrogen and Biomethane Production and Utilisation as a Vehicle Fuel. Bioresource Technology, 131, 235-245. http://dx.doi.org/10.1016/j.biortech.2012.12.109
|
[120]
|
Seppala, M., Pyykkönen, V., Väisänen, A. and Rintala, J. (2013) Biomethane Production from Maize and Liquid Cow Manure—Effect of Share of Maize, Post-Methanation Potential and Digestate Characteristics. Fuel, 107, 209-216. http://dx.doi.org/10.1016/j.fuel.2012.12.069
|
[121]
|
El-Mashad, H.M. (2015) Biomethane and Ethanol Production Potential of Spirulina platensis Algae and Enzymatically Saccharified Switchgrass. Biochemical Engineering Journal, 93, 119-127. http://dx.doi.org/10.1016/j.bej.2014.09.009
|
[122]
|
Antoni, D., Zverlov, V. and Schwarz, W. (2007) Biofuels from Microbes. Applied Microbiology and Biotechnology, 77, 23-35. http://dx.doi.org/10.1007/s00253-007-1163-x
|
[123]
|
Sambusiti, C., Monlau, F., Ficara, E., Carrère, H. and Malpei, F. (2013) A Comparison of Different Pre-Treatments to Increase Methane Production from Two Agricultural Substrates. Applied Energy, 104, 62-70. http://dx.doi.org/10.1016/j.apenergy.2012.10.060
|
[124]
|
Mirahmadi, K., Mohseni Kabir, M., Jeihanipour, A., Karimi, K. and Taherzadeh, M. (2010) Alkaline Pretreatment of Spruce and Birch to Improve Bioethanol and Biogas Production. BioResources, 5, 928-938.
|
[125]
|
Zheng, M., Li, X., Li, L., Yang, X. and He, Y. (2009) Enhancing Anaerobic Biogasification of Corn Stover through Wet State NaOH Pretreatment. Bioresource Technology, 100, 5140-5145. http://dx.doi.org/10.1016/j.biortech.2009.05.045
|
[126]
|
Liew, L.N., Shi, J. and Li, Y. (2011) Enhancing the Solid-State Anaerobic Digestion of Fallen Leaves through Simultaneous Alkaline Treatment. Bioresource Technology, 102, 8828-8834. http://dx.doi.org/10.1016/j.biortech.2011.07.005
|
[127]
|
Sigurbjornsdottir, M.A. and Orlygsson, J. (2012) Combined Hydrogen and Ethanol Production from Sugars and Lignocellulosic Biomass by Thermoanaerobacterium AK54, Isolated from Hot Spring. Applied Energy, 97, 785-791. http://dx.doi.org/10.1016/j.apenergy.2011.11.035
|
[128]
|
Ren, N., Wang, A., Cao, G., Xu, J. and Gao L. (2009) Bioconversion of Lignocellulosic Biomass to Hydrogen: Potential and Challenges. Biotechnology Advances, 27, 1051-1060. http://dx.doi.org/10.1016/j.biotechadv.2009.05.007
|
[129]
|
Song, Z.-X., Dai, Y., Fan, Q.-L., Li, X.-H., Fan, Y.-T. and Hou, H.-W. (2012) Effects of Pretreatment Method of Natural Bacteria Source on Microbial Community and Bio-Hydrogen Production by Dark Fermentation. International Journal of Hydrogen Energy, 37, 5631-5636. http://dx.doi.org/10.1016/j.ijhydene.2012.01.010
|
[130]
|
Chen, C.C., Lin, C.Y. and Chang, J.S. (2001) Kinetics of Hydrogen Production with Continuous Anaerobic Cultures Utilizing Sucrose as the Limiting Substrate. Applied Microbiology and Biotechnology, 57, 56-64. http://dx.doi.org/10.1007/s002530100747
|
[131]
|
Kumar, N. and Das, D. (2001) Continuous Hydrogen Production by Immobilized Enterobacter cloacae IIT-BT 08 Using Lignocellulosic Materials as Solid Matrices. Enzyme and Microbial Technology, 29, 280-287. http://dx.doi.org/10.1016/S0141-0229(01)00394-5
|
[132]
|
Xing, D., Ren, N., Li, Q., Lin, M., Wang, A. and Zhao, L. (2006) Ethanoligenens harbinense gen. nov., sp. nov., Isolated from Molasses Wastewater. International Journal of Systematic and Evolutionary Microbiology, 56, 755-760. http://dx.doi.org/10.1099/ijs.0.63926-0
|
[133]
|
van Niel, E.W.J, Budde, M.A.W., de Haas, G.G., van der Wal, F.J., Claassen, P.A.M. and Stams, A.J.M. (2002) Distinctive Properties of High Hydrogen Producing Extreme Thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. International Journal of Hydrogen Energy, 27, 1391-1398. http://dx.doi.org/10.1016/S0360-3199(02)00115-5
|
[134]
|
Lu, Y., Zhang, W.D., Song, H.C., Li, J.C. and Xia, C.F. (2003) Research on Potential of the Hydrogen Fermentation with Pig Dung. Energy Engineering, 2, 26.
|
[135]
|
Fan, L.T., Lee, Y.-H. and Gharpuray, M.M. (1982) The Nature of Lignocellulosics and Their Pretreatments for Enzymatic Hydrolysis. In: Advances in Biochemical Engineering, Springer Berlin Heidelberg, 157-187.
|
[136]
|
Tang, X.X., Ren, N.Q. and Xu, J.F. (2013) Evaluation of Hydrogen Production from Corn Cob with the Mesophilic Bacterium Clostridium hydrogeniproducens HR-1. International Journal of Hydrogen Energy, 38, 9104-9110. http://dx.doi.org/10.1016/j.ijhydene.2013.05.066
|
[137]
|
Sauer, M., Porro, D., Mattanovich, D. and Branduardi, P. (2008) Microbial Production of Organic Acids: Expanding the Markets. Trends in Biotechnology, 26, 100-108. http://dx.doi.org/10.1016/j.tibtech.2007.11.006
|
[138]
|
Dhillon, G.S., Brar, S.K., Kaur, S. and Verma, M. (2013) Bioproduction and Extraction Optimization of Citric Acid from Aspergillus niger by Rotating Drum Type Solid-State Bioreactor. Industrial Crops and Products, 41, 78-84. http://dx.doi.org/10.1016/j.indcrop.2012.04.001
|
[139]
|
Prado, F.C., Vandenberghe, L.P.S., Woiciechowski, A.L., Rodrígues-León, J.A. and Soccol, C.R. (2005) Citric Acid Production by Solid-State Fermentation on a Semi-Pilot Scale Using Different Percentages of Treated Cassava Bagasse. Brazilian Journal of Chemical Engineering, 22, 547-555. http://dx.doi.org/10.1590/S0104-66322005000400007
|
[140]
|
Sharma, A., Vivekanand, V. and Singh, R.P. (2008) Solid-State Fermentation for Gluconic Acid Production from Sugarcane Molasses by Aspergillus niger ARNU-4 Employing Tea Waste as the Novel Solid Support. Bioresource Technology, 99, 3444-3450. http://dx.doi.org/10.1016/j.biortech.2007.08.006
|
[141]
|
Dhillon, G.S., Brar, S.K., Verma, M. and Tyagi, R.D. (2011) Recent Advances in Citric Acid Bio-Production and Recovery. Food and Bioprocess Technology, 4, 505-529. http://dx.doi.org/10.1007/s11947-010-0399-0
|
[142]
|
Prado, F.C., de Souza Vandenberghe, L.P. and Soccol, C.R. (2005) Relation between Citric Acid Production by Solid-State Fermentation from Cassava Bagasse and Respiration of Aspergillus niger LPB 21 in Semi-Pilot Scale. Brazilian Archives of Biology and Technology, 48, 29-36. http://dx.doi.org/10.1590/S1516-89132005000400004
|
[143]
|
Papagianni, M. (2007) Advances in Citric Acid Fermentation by Aspergillus niger: Biochemical Aspects, Membrane Transport and Modeling. Biotechnology Advances, 25, 244-263. http://dx.doi.org/10.1016/j.biotechadv.2007.01.002
|
[144]
|
Torrado, A.M., Cortés, S., Salgado, J.M., Max, B., Rodríguez, N., Bibbins, B.P., Converti, A. and Domínguez, J.M. (2011) Citric Acid Production from Orange Peel Wastes by Solid-State Fermentation. Brazilian Journal of Microbiology, 42, 394-409. http://dx.doi.org/10.1590/S1517-83822011000100049
|
[145]
|
Bari, M.N., Alam, M.Z., Muyibi, S.A., Jamal, P. and Abdullah Al, M. (2009) Improvement of Production of Citric Acid from Oil Palm Empty Fruit Bunches: Optimization of Media by Statistical Experimental Designs. Bioresource Technology, 100, 3113-3120. http://dx.doi.org/10.1016/j.biortech.2009.01.005
|
[146]
|
Shojaosadati, S.A. and Babaeipour, V. (2002) Citric Acid Production from Apple Pomace in Multi-Layer Packed Bed Solid-State Bioreactor. Process Biochemistry, 37, 909-914. http://dx.doi.org/10.1016/S0032-9592(01)00294-1
|
[147]
|
Kiel, H., Guvrin, R. and Henis, Y. (1981) Citric Acid Fermentation by Aspergillus niger on Low Sugar Concentrations and Cotton Waste. Applied and Environmental Microbiology, 42, 1-4. http://www.ncbi.nlm.nih.gov/pubmed/16345802
|
[148]
|
Hang, Y.D. and Woodams, E.E. (1998) Production of Citric Acid from Corncobs by Aspergillus niger. Bioresource Technology, 65, 251-253. http://dx.doi.org/10.1016/S0960-8524(98)00015-7
|
[149]
|
Hang, Y.D. and Woodams, E.E. (2000) Corn Husks: A Potential Substrate for Production of Citric Acid by Aspergillus niger. LWT-Food Science and Technology, 33, 520-521. http://dx.doi.org/10.1006/fstl.2000.0711
|
[150]
|
Tran, C.T., Sly, L.I. and Mitchell, D.A. (1998) Selection of a Strain of Aspergillus for the Production of Citric Acid from Pineapple Waste in Solid-State Fermentation. World Journal of Microbiology and Biotechnology, 14, 399-404. http://link.springer.com/article/10.1023%2FA%3A1008821413239 http://dx.doi.org/10.1023/A:1008821413239
|
[151]
|
Wang, D., Li, Q., Yang, M., Zhang, Y., Su, Z. and Xing, J. (2011) Efficient Production of Succinic Acid from Corn Stalk Hydrolysates by a Recombinant Escherichia coli with ptsG Mutation. Process Biochemistry, 46, 365-371. http://dx.doi.org/10.1016/j.procbio.2010.09.012
|
[152]
|
Liu, R., Liang, L., Li, F., Wu, M., Chen, K., Ma, J., Jiang, M., Wei, P. and Ouyang, P. (2013) Efficient Succinic Acid Production from Lignocellulosic Biomass by Simultaneous Utilization of Glucose and Xylose in Engineered Escherichia coli. Bioresource Technology, 149, 84-91. http://dx.doi.org/10.1016/j.biortech.2013.09.052
|
[153]
|
Zheng, P., Fang, L., Xu, Y., Dong, J.-J., Ni, Y. and Sun, Z.-H. (2010) Succinic Acid Production from Corn Stover by Simultaneous Saccharification and Fermentation Using Actinobacillus succinogenes. Bioresource Technology, 101, 7889-7894. http://dx.doi.org/10.1016/j.biortech.2010.05.016
|
[154]
|
Bao, H., Liu, R., Liang, L., Jiang, Y., Jiang, M., Ma, J., Chen, K., Jia, H., Wei, P. and Ouyang, P. (2014) Succinic Acid Production from Hemicellulose Hydrolysate by an Escherichia coli Mutant Obtained by Atmospheric and Room Temperature Plasma and Adaptive Evolution. Enzyme and Microbial Technology, 66, 10-15. http://dx.doi.org/10.1016/j.enzmictec.2014.04.017
|
[155]
|
Kim, D.Y., Yim, S.C., Lee, P.C., Lee, W.G., Lee, S.Y. and Chang, H.N. (2004) Batch and Continuous Fermentation of Succinic Acid from Wood Hydrolysate by Mannheimia succiniciproducens MBEL55E. Enzyme and Microbial Technology, 35, 648-653. http://dx.doi.org/10.1016/j.enzmictec.2004.08.018
|
[156]
|
Wang, C., Yan, D., Li, Q., Sun, W. and Xing, J. (2014) Ionic Liquid Pretreatment to Increase Succinic Acid Production from Lignocellulosic Biomass. Bioresource Technology, 172, 283-289. http://dx.doi.org/10.1016/j.biortech.2014.09.045
|
[157]
|
Gunnarsson, I.B., Kuglarz, M., Karakashev, D. and Angelidaki, I. (2015) Thermochemical Pretreatments for Enhancing Succinic Acid Production from Industrial Hemp (Cannabis sativa L.). Bioresource Technology, 182, 58-66. http://dx.doi.org/10.1016/j.biortech.2015.01.126
|
[158]
|
Cheng, K.-K., Wu, J., Wang, G.-Y., Li, W.-Y., Feng, J. and Zhang, J.-A. (2013) Effects of pH and Dissolved CO2 Level on Simultaneous Production of 2,3-Butanediol and Succinic Acid Using Klebsiella pneumoniae. Bioresource Technology, 135, 500-503. http://dx.doi.org/10.1016/j.biortech.2012.08.100
|
[159]
|
Yan, D., Wang, C., Zhou, J., Liu, Y., Yang, M. and Xing, J. (2014) Construction of Reductive Pathway in Saccharomyces cerevisiae for Effective Succinic Acid Fermentation at Low pH Value. Bioresource Technology, 156, 232-239. http://dx.doi.org/10.1016/j.biortech.2014.01.053
|
[160]
|
Wee, Y.-J. and Ryu, H.-W. (2009) Lactic Acid Production by Lactobacillus sp. RKY2 in a Cell-Recycle Continuous Fermentation Using Lignocellulosic Hydrolyzates as Inexpensive Raw Materials. Bioresource Technology, 100, 4262- 4270. http://dx.doi.org/10.1016/j.biortech.2009.03.074
|
[161]
|
Zhang, Y. and Vadlani, P.V. (2015) Lactic Acid Production from Biomass-Derived Sugars via Co-Fermentation of Lactobacillus brevis and Lactobacillus plantarum. Journal of Bioscience and Bioengineering, 119, 694-699. http://dx.doi.org/10.1016/j.jbiosc.2014.10.027
|
[162]
|
Hu, J., Zhang, Z., Lin, Y., Zhao, S., Mei, Y., Liang, Y. and Peng, N. (2015) High-Titer Lactic Acid Production from NaOH-Pretreated Corn Stover by Bacillus coagulans LA204 Using Fed-Batch Simultaneous Saccharification and Fermentation under Non-Sterile Condition. Bioresource Technology, 182, 251-257. http://dx.doi.org/10.1016/j.biortech.2015.02.008
|
[163]
|
Abdel-Rahman, M.A., Tashiro, Y. and Sonomoto, K. (2011) Lactic Acid Production from Lignocellulose-Derived Sugars Using Lactic Acid Bacteria: Overview and Limits. Journal of Biotechnology, 156, 286-301. http://dx.doi.org/10.1016/j.jbiotec.2011.06.017
|
[164]
|
Ouyang, J., Ma, R., Zheng, Z., Cai, C., Zhang, M. and Jiang, T. (2013) Open Fermentative Production of L-Lactic Acid by Bacillus sp. Strain NL01 Using Lignocellulosic Hydrolyzates as Low-Cost Raw Material. Bioresource Technology, 135, 475-480. http://dx.doi.org/10.1016/j.biortech.2012.09.096
|
[165]
|
Gao, M.-T., Kaneko, M., Hirata, M., Toorisaka, E. and Hano, T. (2008) Utilization of Rice Bran as Nutrient Source for Fermentative Lactic Acid Production. Bioresource Technology, 99, 3659-3664. http://dx.doi.org/10.1016/j.biortech.2007.07.025
|
[166]
|
Guo, W., Jia, W., Li, Y. and Chen, S. (2010) Performances of Lactobacillus brevis for Producing Lactic Acid from Hydrolysate of Lignocellulosics. Applied Biochemistry and Biotechnology, 161, 124-136. http://dx.doi.org/10.1007/s12010-009-8857-8
|
[167]
|
Xavier, S. and Lonsane, B.K. (1994) Sugar-Cane Pressmud as a Novel and Inexpensive Substrate for Production of Lactic Acid in a Solid-State Fermentation System. Applied Microbiology and Biotechnology, 41, 291-295. http://dx.doi.org/10.1007/BF00221221
|
[168]
|
Patel, M., Ou, M., Ingram, L.O. and Shanmugam, K.T. (2004) Fermentation of Sugar Cane Bagasse Hemicellulose Hydrolysate to l(+)-Lactic Acid by a Thermotolerant Acidophilic Bacillus sp. Biotechnology Letters, 26, 865-868. http://dx.doi.org/10.1023/B:bile.0000025893.27700.5c
|
[169]
|
Li, Z., Han, L., Ji, Y., Wang, X. and Tan, T. (2010) Fermentative Production of L-Lactic Acid from Hydrolysate of Wheat Bran by Lactobacillus rhamnosus. Biochemical Engineering Journal, 49, 138-142. http://dx.doi.org/10.1016/j.bej.2009.10.014
|
[170]
|
Gao, C., Ma, C. and Xu, P. (2011) Biotechnological Routes Based on Lactic Acid Production from Biomass. Biotechnology Advances, 29, 930-939. http://dx.doi.org/10.1016/j.biotechadv.2011.07.022
|
[171]
|
Park, E.Y., Anh, P.N. and Okuda, N. (2004) Bioconversion of Waste Office Paper to L(+)-Lactic Acid by the Filamentous Fungus Rhizopus oryzae. Bioresource Technology, 93, 77-83. http://dx.doi.org/10.1016/j.biortech.2003.08.017
|
[172]
|
Yáñez, R., Belén Moldes, A., Alonso, J. and Parajo, J. (2003) Production of D(-)-Lactic Acid from Cellulose by Simultaneous Saccharification and Fermentation Using Lactobacillus coryniformis subsp. torquens. Biotechnology Letters, 25, 1161-1164. http://dx.doi.org/10.1023/A:1024534106483
|
[173]
|
Hofvendahl, K. and Hahn-Hägerdal, B. (2000) Factors Affecting the Fermentative Lactic Acid Production from Renewable Resources. Enzyme and Microbial Technology, 26, 87-107. http://dx.doi.org/10.1016/S0141-0229(99)00155-6
|
[174]
|
Rackemann, D.W. and Doherty, W.O.S. (2011) The Conversion of Lignocellulosics to Levulinic Acid. Biofuels, Bioproducts and Biorefining, 5, 198-214. http://dx.doi.org/10.1002/bbb.267
|
[175]
|
Weingarten, R., Conner, W.C. and Huber, G.W. (2012) Production of Levulinic Acid from Cellulose by Hydrothermal Decomposition Combined with Aqueous Phase Dehydration with a Solid Acid Catalyst. Energy & Environmental Science, 5, 7559-7574. http://dx.doi.org/10.1039/c2ee21593d
|
[176]
|
Jahan, M.S., Chowdhury, D.A.N. and Islam, M.K. (2007) Atmospheric Formic Acid Pulping and TCF Bleaching of Dhaincha (Sesbania aculeata), Kash (Saccharum spontaneum) and Banana Stem (Musa Cavendish). Industrial Crops and Products, 26, 324-331. http://dx.doi.org/10.1016/j.indcrop.2007.03.012
|
[177]
|
Jahan, M.S., Saeed, A., He, Z. and Ni, Y. (2011) Jute as Raw Material for the Preparation of Microcrystalline Cellulose. Cellulose, 18, 451-459. http://dx.doi.org/10.1007/s10570-010-9481-z
|
[178]
|
Jahan, M.S., Chowdhury, D.N., Islam, M.K. and Islam, M.S. (2007) Organic Acid Pulping of Jute and Its Mechanism. Cellulose Chemistry and Technology, 41, 137-147.
|
[179]
|
Jayakumar, G.C., Kanth, S.V., Chandrasekaran, B., Rao, J.R. and Nair, B.U. (2010) Preparation and Antimicrobial Activity of Scleraldehyde from Schizophyllum commune. Carbohydrate Research, 345, 2213-2219. http://dx.doi.org/10.1016/j.carres.2010.07.041
|
[180]
|
Oner, E.T. (2013) Pretreatment Techniques for Biofuels and Biorefineries. Springer Berlin Heidelberg.
|
[181]
|
Shu, C.-H. and Hsu, H.-J. (2011) Production of Schizophyllan Glucan by Schizophyllum commune ATCC 38548 from Detoxificated Hydrolysate of Rice Hull. Journal of the Taiwan Institute of Chemical Engineers, 42, 387-393. http://dx.doi.org/10.1016/j.jtice.2010.08.009
|
[182]
|
Wang, D., Ju, X., Zhou, D. and Wei, G. (2014) Efficient Production of Pullulan Using Rice Hull Hydrolysate by Adaptive Laboratory Evolution of Aureobasidium pullulans. Bioresource Technology, 164, 12-19. http://dx.doi.org/10.1016/j.biortech.2014.04.036
|
[183]
|
Sheng, L., Zhu, G. and Tong, Q. (2013) Mechanism Study of Tween 80 Enhancing the Pullulan Production by Aureobasidium pullulans. Carbohydrate Polymers, 97, 121-123. http://dx.doi.org/10.1016/j.carbpol.2013.04.058
|
[184]
|
Sugumaran, K.R., Gowthami, E., Swathi, B., Elakkiya, S., Srivastava, S.N., Ravikumar, R., Gowdhaman, D. and Ponnusami, V. (2013) Production of Pullulan by Aureobasidium pullulans from Asian Palm Kernel: A Novel Substrate. Carbohydrate Polymers, 92, 697-703. http://dx.doi.org/10.1016/j.carbpol.2012.09.062
|
[185]
|
Psomas, S.K., Liakopoulou-Kyriakides, M. and Kyriakidis, D.A. (2007) Optimization Study of Xanthan Gum Production Using Response Surface Methodology. Biochemical Engineering Journal, 35, 273-280. http://dx.doi.org/10.1016/j.bej.2007.01.036
|
[186]
|
Moreno, J., López, M.J., Vargas-García, C. and Vázquez, R. (1998) Use of Agricultural Wastes for Xanthan Production by Xanthomonas campestris. Journal of Industrial Microbiology and Biotechnology, 21, 242-246. http://dx.doi.org/10.1038/sj.jim.2900582
|
[187]
|
Mondal, A.K., Sengupta, S., Bhowal, J. and Bhattacharya, D.K. (2012) Utilization of Fruit Wastes in Producing Single Cell Protein. International Journal of Science, Environment and Technology, 1, 430-438.
|
[188]
|
Tesfaw, A. and Assefa, F. (2014) Co-Culture: A Great Promising Method in Single Cell Protein Production. Biotechnology and Molecular Biology Reviews, 9, 12-20. http://dx.doi.org/10.5897/BMBR2014.0223
|
[189]
|
Yousufi, M.K. (2012) To Determine Protein Content of Single Cell Protein Produced by Using Various Combinations of Fruit Wastes and Two Standard Food Fungi. International Journal of Advanced Biotechnology and Research, 3, 533-536. http://bipublication.com/files/IJABR-V3I1-2012-08.pdf
|
[190]
|
Jaganmohan, P., Daas, B.P. and Prasad, S.V. (2013) Production of Single Cell Protein (SCP) with Aspergillus terreus Using Solid State Fermentation. European Journal of Biological Sciences, 5, 38-43.
|
[191]
|
Essien, J.P., Akpan, E.J. and Essien, E.P. (2005) Studies on Mould Growth and Biomass Production Using Waste Banana Peel. Bioresource Technology, 96, 1451-1456 http://dx.doi.org/10.1016/j.biortech.2004.12.004
|
[192]
|
Leathers, T.D. (2003) Bioconversions of Maize Residues to Value-Added Coproducts Using Yeast-Like Fungi. FEMS Yeast Research, 3, 133-140. http://dx.doi.org/10.1016/S1567-1356(03)00003-5
|
[193]
|
Rafqul, I.S.M. and Mimi Sakinah, A.M. (2012) A Perspective: Bioproduction of Xylitol by Enzyme Technology and Future Prospects. International Food Research Journal, 19, 405-408.
|
[194]
|
Rao, R.S., Jyothi, C.P. and Rao, L.V. (2008) Biotechnological Production of Xylitol by Mutant Candida tropicalis OMV5: Process Optimization Using Statistical Approach. Indian Journal of Biotechnology, 7, 218-224. http://nopr.niscair.res.in/bitstream/123456789/1832/1/IJBT%207%282%29%20218-224.pdf
|
[195]
|
Guo, C., Zhao, C., He, P., Lu, D., Shen, A. and Jiang, N. (2006) Screening and Characterization of Yeasts for Xylitol Production. Journal of Applied Microbiology, 101, 1096-1104. http://dx.doi.org/10.1111/j.1365-2672.2006.02994.x
|