H2 and CH4 Sorption on Cu-BTC Metal Organic Frameworks at Pressures up to 15 MPa and Temperatures between 273 and 318 K
Yves Gensterblum
DOI: 10.4236/jsemat.2011.12004   PDF    HTML     6,477 Downloads   13,380 Views   Citations


Sorption isotherms of methane and hydrogen on Cu3(BTC)2 have been measured in the temperature range from 273 to 318 K and at pressures up to 15 MPa. H2 excess sorption capacities of the Cu3(BTC)2 amounted to 3.9 mg/g at 14 MPa. Promising maximum CH4 excess sorption capacities on the same sample were reached at approximately 5 MPa. They amounted to 101, 100, 92 and 80 mg/g at 273, 278, 293 and 318 K, respectively. The sorbed phase density was essestially the same for all temperatures and amounted to ~600 kg/m3. Structural changes of the Cu3(BTC)2 samples after thermal activation and treatment with high pressure H2 and CH4 were tested. It was found that the initial micropore structure has virtually disappeared as evidenced by a decrease of the Langmuir specific surface area by a factor ~3 and CO2 micropore volume by a factor of ~4 for H2 and ~3 for CH4. This is in line with an increase in the average pore diameter from initially 9.2 to 15.7 for H2 and 12.8 for CH4.

Share and Cite:

Gensterblum, Y. (2011) H2 and CH4 Sorption on Cu-BTC Metal Organic Frameworks at Pressures up to 15 MPa and Temperatures between 273 and 318 K. Journal of Surface Engineered Materials and Advanced Technology, 1, 23-29. doi: 10.4236/jsemat.2011.12004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe and O. M. Yaghi, “Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage,” Science Magazine, Vol. 295, No. 5554, 2002, pp. 469-472. doi:10.1126/science.1067208
[2] N. Amaroli and V. Balzani, “The Future of Energy Supply: Challenges and Opportunities,” General and Introductory Chemistry, Vol. 46, No. 1-2, 2007, pp. 52-66. doi:10.1002/anie.200602373
[3] B. Panella, M. Hirscher, H. Pütter and U. Müller, “Hydrogen Adsorption in Metal-Organic Frameworks: Cu-MOFs and Zn-MOFs Compared,” Advanced Functional Materials, Vol. 16, No. 4, 2006, pp. 520-524. doi:10.1002/adfm.200500561
[4] H. Li, M. Eddaoudi, M. O’Keeffe and O. M. Yaghi, “Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework,” Nature, Vol. 402, pp. 276-279. doi:10.1038/46248
[5] S. Y. Chui, et al., “A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n,” Science Magazine, Vol. 283, No. 5405, 1999,pp. 1148-1150. doi:10.1126/science.283.5405.1148
[6] K. Schlichte, T. Kratzke and S. Kaskel, “Improved synthesis, Thermal Stability and Catalytic Properties of The Metal-Organic Framework Compound Cu3(BTC)2,” Microporous and Mesoporous Materials, Vol. 73, No. 1-2, 2004, pp. 81-88. doi:10.1016/j.micromeso.2003.12.027
[7] B. Panella and M. Hirscher. “Hydrogen Physisorption in Metal-Organic Porous Systems,” Advanced Material, Vol. 17, No. 5, 2005, pp. 538-541. doi:10.1002/adma.200400946
[8] G. Férey, M. Latroche, C. Serre, F. Millange, T. Loiseau and A. Percheron-Guégan, “Hydrogen Adsorption in the Nanoporous Metal-Benzenedicarboxylate M(OH)(O2C– C6H4–CO2)(M = Al3+, Cr3+), MIL-53,” Chemical Communications, No. 24, 2003, pp. 2976-2977. doi:10.1039/B308903G
[9] M. G. Nijkamp, J. E. M. J. Raaymakers, A. J. van Dillen and K. P. de Jong “Hydrogen Storage Using Physisorption – Materials Demands,” Applied Physics A Materials Science & Processing, Vol. 72, No. 5, 2001, pp. 619-623.
[10] J. Beneyto, F. Suárez-García, D. Lozano-Castelló, D. Cazorla-Amorós and A. Linares-Solano, “Hydrogen Storage on Chemically Activated Carbons and Carbon Nanomaterials at High Pressures,” Carbon, Vol. 45, No. 2, 2007, pp. 293-303. doi:10.1016/j.carbon.2006.09.022
[11] Q. M. Wang, D. Shen, M. Bulow, M. L. Lau, S. Deng, F. R. Fitch and N. O. Lemcoff, J. Semanscin, “Metallo-Organic Molecular Sieve for Gas Separation and Purification,” Microporous and Mesoporous Materials, Vol. 55, No. 2, 2002, pp. 217-230. doi:10.1016/S1387-1811(02)00405-5
[12] X. Lin, A. J. Blake, C. Wilson, X. Z. Sun, N. R. Champness, M. W. George, P. Hubberstey, R. Mokaya and M. Schroder, “A Porous Framework Polymer Based on a Zinc(II) 4,4’-Bipyridine-2,6,2‘, 6‘-Tetracarboxylate: Synthesis, Structure, and ‘Zeolite-Like’ Behaviors,” Journal of American Chemical Society, Vol. 128, No. 33, 2006, pp. 10745-10753. doi:10.1021/ja060946u
[13] J. Senkovska and S. Kaskel, “High Pressure Methane Adsorption in the Metal-Organic Frameworks Cu3(BTC)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bdc)3,” Microporous and Mesoporous Materials, Vol. 112, No. 1-3, 2008, pp. 108-115. doi:10.1016/j.micromeso.2007.09.016
[14] U. Setzmann and W. Wagner, “A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range From the Melting Line to 625 K at pressures up to 1000 MPa,” Journal of Physical and Chemical Reference Data , Vol. 20, No. 6, 1991, pp. 1061-1155. doi:10.1063/1.555898
[15] R. D. McCarty and V. D Arp, “A New Wide Range Equation of State for Helium,” Advances in Cryogenic Engineering, Vol. 35, 1990, pp. 1465-1475.
[16] Y. Gensterblum, P. van Hemert, P. Billemont, A. Busch, D. Charriere, D. Li, B. M. Krooss, G. de Weireld, D. Prinz and K-H. A. A. Wolf, “European Inter-Laboratory Comparison of High Pressure CO2 Sorption Isotherms. I: Activated Carbon,” Carbon, Vol. 47, No. 13, 2009, pp. 2958-2969. doi:10.1016/j.carbon.2009.06.046
[17] A. L. Goodman, A. Busch, G. Duffy, J. E. Fitzgerald, et al., “An Inter-laboratory Comparison of CO2 Isotherms Measured on Argonne Premium Coal Samples,” Energy and Fuels, Vol. 18, No. 4, 2004, pp. 1175-1182. doi:10.1021/ef034104h
[18] Y. Gensterblum, P. Van Hemert, P. Billemont, et al., “European inter-laboratory comparison of high pressure CO2 sorption isotherms II: Natural coals,” International Journal of Coal Geology, Vol. 84, No. 2, 2010, pp. 115-124. doi:10.1016/j.carbon.2009.06.046
[19] A. Busch, Y. Gensterblum, B. M. Krooss and R. Littke, “Methane and Carbon Dioxide Adsorption-Diffusion Experiments on Coal: An upscaling and Modelling,” International Journal of Coal Geology, Vol. 60, No. 2-4, 2004, pp. 151-168. doi:10.1016/j.coal.2004.05.002
[20] S. Brunauer, P. H. Emmett and E. Teller, “Adsorption of Gases in Multimolecular Layers,” Journal of American Chemical Society, Vol. 60, No. 2, 1938, pp. 309-319. doi:10.1021/ja01269a023
[21] M. M. Dubinin, “Physical Adsorption of Gases and Vapors in Micropores,” Academic Press, New York, 1975, pp. 1-70.
[22] M. M. Dubinin and V. A. Astakhov, “Description of Adsorption Equilibria of Vapors on Zeolites over Wide Ranges of Temperature And Pressure,” Advances in Chemistry, Vol. 102, No. 69, 1971, pp. 65-69. doi:10.1021/ba-1971-0102.ch044
[23] M. Thommes, B. Smarsly, M. Groenevolt, P. I. Ravi-kovitch and A.V. Neimark, “Adsorption Hysteresis of Nitrogen and Argon in Pore Networks and Characterization of Novel Micro and Mesoporous Silicas,” Langmuir, Vol. 22, Vol. 2, 2006, pp. 756-764. doi:10.1021/la051686h
[24] M. Kramer, U. Schwarzer, S. Kaskel, “Synthesis and properties of the metal-organic framework Mo3(BTC)2 (TUDMOF-1)” Journal of Material Chemistry, Vol. 16, 2006, pp. 2245-2248. doi:10.1039/b601811d
[25] P. Krawiec, M. Kramer, M. Sabo, R. Kunschke, H. Fr?de and S. Kaskel, “Improved Hydrogen Storage in the Metal-Organic Framework Cu3(BTC)2” Advanced Engineering Material, Vol. 8, No. 4, 2006, pp. 293-296. doi:10.1002/adem.200500223
[26] A. R. Millward and O. M. Yaghi, “Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature,” Journal of American Chemical Society, Vol. 127, No. 51, 2005, pp 17998-17999. doi:10.1021/ja0570032
[27] R. Humayun, D. L. Tomasko, “High-Resolution Adsorp-Tion Isotherms of Supercritical Carbon Dioxide on Activated Carbon,” AICHE Journal, Vol. 46, No. 10, 2000,pp. 2065-2075. doi:10.1002/aic.690461017

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.