[1]
|
Zakharenko, A.A. (2013) Piezoelectromagnetic SH-SAWs: A Review. Canadian Journal of Pure & Applied Sciences (SENRA Academic Publishers, Burnaby, British Columbia, Canada), 7, 2227-2240.
|
[2]
|
Nan, C.W. (1994) Magnetoelectric Effect in Composites of Piezoelectric and Piezomagnetic Phases. Physical Review B, 50, 6082-6088. http://dx.doi.org/10.1103/PhysRevB.50.6082
|
[3]
|
Fiebig, M. (2005) Revival of the Magnetoelectric Effect. Journal of Physics D: Applied Physics, 38, R123-R152.
http://dx.doi.org/10.1088/0022-3727/38/8/R01
|
[4]
|
Özgür, ü., Alivov, Ya. and Morkoç, H. (2009) Microwave Ferrites, Part 2: Passive Components and Electrical Tuning. Journal of Materials Science: Materials in Electronics, 20, 911-952. http://dx.doi.org/10.1007/s10854-009-9924-1
|
[5]
|
Kimura, T. (2012) Magnetoelectric Hexaferrites. Annual Review of Condensed Matter Physics, 3, 93-110.
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125101
|
[6]
|
Pullar, R.C. (2012) Hexagonal Ferrites: A Review of the Synthesis, Properties and Applications of Hexaferrite Ceramics. Progress in Materials Science, 57, 1191-1334. http://dx.doi.org/10.1016/j.pmatsci.2012.04.001
|
[7]
|
Park, Ch.-S. and Priya, Sh. (2012) Broadband/Wideband Magnetoelectric Response.Advances in Condensed Matter Physics (Hindawi Publishing Corporation), 2012, Article ID: 323165.
|
[8]
|
Bichurin, M.I., Petrov, V.M. and Petrov, R.V. (2012) Direct and Inverse Magnetoelectric Effect in Layered Composites in Electromechanical Resonance Range: A Review. Journal of Magnetism and Magnetic Materials, 324, 3548-3550. http://dx.doi.org/10.1016/j.jmmm.2012.02.086
|
[9]
|
Chen, T., Li, S. and Sun, H. (2012) Metamaterials Application in Sensing. MDPI Sensors, 12, 2742-2765.
http://dx.doi.org/10.3390/s120302742
|
[10]
|
Bichurin, M., Petrov, V., Zakharov, A., Kovalenko, D., Yang, S.Ch., Maurya, D., Bedekar, V. and Priya, Sh. (2011) Magnetoelectric Interactions in Lead-Based and Lead-Free Composites. Materials, 4, 651-702.
http://dx.doi.org/10.3390/ma4040651
|
[11]
|
Srinivasan, G. (2010) Magnetoelectric Composites. Annual Review of Materials Research, 40, 153-178.
http://dx.doi.org/10.1146/annurev-matsci-070909-104459
|
[12]
|
Zhai, J., Xing, Z.-P., Dong, S.-X., Li, J.-F. and Viehland, D. (2008) Magnetoelectric Laminate Composites: An Overview. Journal of the American Ceramic Society, 91, 351-358. http://dx.doi.org/10.1111/j.1551-2916.2008.02259.x
|
[13]
|
Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D. and Srinivasan, G. (2008) Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions. Journal of Applied Physics, 103, Article ID: 031101.
http://dx.doi.org/10.1063/1.2836410
|
[14]
|
Eerenstein, W., Mathur, N.D. and Scott, J.F. (2006) Multiferroic and Magnetoelectric Materials. Nature, 442, 759-765.
http://dx.doi.org/10.1038/nature05023
|
[15]
|
Spaldin, N.A. and Fiebig, M. (2005) The Renaissance of Magnetoelectric Multiferroics. Science, 309, 391-392.
http://dx.doi.org/10.1126/science.1113357
|
[16]
|
Fiebig, M., Pavlov, V.V. and Pisarev, R.V. (2005) Magnetoelectric Phase Control in Multiferroic Manganites. Journal of the Optical Society of America B, 22, 96-118. http://dx.doi.org/10.1364/JOSAB.22.000096
|
[17]
|
Khomskii, D.I. (2006) Multiferroics: Different Ways to Combine Magnetism and Ferroelectricity. Journal of Magnetism and Magnetic Materials, 306, 1-8. http://dx.doi.org/10.1016/j.jmmm.2006.01.238
|
[18]
|
Cheong, S.-W. and Mostovoy, M. (2007) Multiferroics: A Magnetic Twist for Ferroelectricity. Nature Materials, 6, 13-20. http://dx.doi.org/10.1038/nmat1804
|
[19]
|
Ramesh, R. and Spaldin, N.A. (2007) Multiferroics: Progress and Prospects in Thin Films. Nature Materials, 6, 21-29.
http://dx.doi.org/10.1038/nmat1805
|
[20]
|
Kimura, T. (2007) Spiral Magnets as Magnetoelectrics. Annual Review of Materials Research, 37, 387-413.
http://dx.doi.org/10.1146/annurev.matsci.37.052506.084259
|
[21]
|
Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T. and Tokura, Y. (2003) Magnetic Control of Ferroelectric Polarization. Nature, 426, 55-58. http://dx.doi.org/10.1038/nature02018
|
[22]
|
Wang, K.F., Liu, J.-M. and Ren, Z.F. (2009) Multiferroicity: The Coupling between Magnetic and Polarization Orders. Advances in Physics, 58, 321-448. http://dx.doi.org/10.1080/00018730902920554
|
[23]
|
Ramesh, R. (2009) Materials Science: Emerging Routes to Multiferroics. Nature, 461, 1218-1219.
http://dx.doi.org/10.1038/4611218a
|
[24]
|
Delaney, K.T., Mostovoy, M. and Spaldin, N.A. (2009) Superexchange-Driven Magnetoelectricity in Magnetic Vertices. Physical Review Letters, 102, Article ID: 157203.
|
[25]
|
Gopinath, S.C.B., Awazu, K. and Fujimaki, M. (2012) Waveguide-Mode Sensors as Aptasensors. MDPI Sensors, 12, 2136-2151. http://dx.doi.org/10.3390/s120202136
|
[26]
|
Fert, A. (2008) Origin, Development, and Future of Spintronics (Nobel Lectures). Reviews of Modern Physics, 80, 1517-1530. http://dx.doi.org/10.1103/RevModPhys.80.1517
|
[27]
|
Fert, A. (2008) Origin, Development, and Future of Spintronics (Nobel Lectures). Physics—Uspekhi, 51, 1336-1348 [Uspekhi Phizicheskikh Nauk (Moscow), 178, 1336-1348].
|
[28]
|
Chappert, C. and Kim, J.-V. (2008) Metal Spintronics: Electronics Free of Charge. Nature Physics, 4, 837-838.
http://dx.doi.org/10.1038/nphys1122
|
[29]
|
Bibes, M. and Barthélémy, A. (2008) Multiferroics: Towards a Magnetoelectric Memory. Nature Materials, 7, 425-426.
http://dx.doi.org/10.1038/nmat2189
|
[30]
|
Prellier, W., Singh, M.P. and Murugavel, P. (2005) The Single-Phase Multiferroic Oxides—From Bulk to Thin Film. Journal of Physics: Condensed Matter, 17, R803-R832. http://dx.doi.org/10.1088/0953-8984/17/30/R01
|
[31]
|
Bichurin, M.I., Petrov, V.M., Filippov, D.A., Srinivasan, G. and Nan, S.V. (2006) Magnetoelectric Materials. Academia Estestvoznaniya Publishers, Moscow.
|
[32]
|
Fetisov, Y.K., Bush, A.A., Kamentsev, K.E., Ostashchenko, A.Y. and Srinivasan, G. (2006) Ferrite-Piezoelectric Multilayers for Magnetic Field Sensors. The IEEE Sensor Journal, 6, 935-938.
http://dx.doi.org/10.1109/JSEN.2006.877989
|
[33]
|
Srinivasan, G. and Fetisov, Y.K. (2006) Microwave Magnetoelectric Effects and Signal Processing Devices. Integrated Ferroelectrics, 83, 89-98. http://dx.doi.org/10.1080/10584580600949105
|
[34]
|
Priya, S., Islam, R.A., Dong, S.X. and Viehland, D. (2007) Recent Advancements in Magnetoelectric Particulate and Laminate Composites. Journal of Electroceramics, 19, 147-164. http://dx.doi.org/10.1007/s10832-007-9042-5
|
[35]
|
Grossinger, R., Duong, G.V. and Sato-Turtelli, R. (2008) The Physics of Magnetoelectric Composites. Journal of Magnetism and Magnetic Materials, 320, 1972-1977. http://dx.doi.org/10.1016/j.jmmm.2008.02.031
|
[36]
|
Ahn, C.W., Maurya, D., Park, C.S., Nahm, S. and Priya, S. (2009) A Generalized Rule for Large Piezoelectric Response in Perovskite Oxide Ceramics and Its Application for Design of Lead-Free Compositions. Journal of Applied Physics, 105, Article ID: 114108.
|
[37]
|
Petrov, V.M., Bichurin, M.I., Laletin, V.M., Paddubnaya, N. and Srinivasan, G. (2003) Modeling of Magnetoelectric Effects in Ferromagnetic/Piezoelectric Bulk Composites. Proceedings of the 5th International Conference on Magnetoelectric Interaction Phenomena in Crystals, MEIPIC-5, Sudak, 21-24 September 2003.
http://arxiv.org/abs/cond-mat/0401645
|
[38]
|
Harshe, G., Dougherty, J.P. and Newnham, R.E. (1993) Theoretical Modelling of 3-0/0-3 Magnetoelectric Composites. International Journal of Applied Electromagnetics in Materials, 4, 161-171.
|
[39]
|
Chu, Y.H., Martin, L.W., Holcomb, M.B. and Ramesh, R. (2007) Controlling Magnetism with Multiferroics. Materials Today, 10, 16-23. http://dx.doi.org/10.1016/S1369-7021(07)70241-9
|
[40]
|
Schmid, H. (1994) Magnetic Ferroelectric Materials. Bulletin of Materials Science, 17, 1411-1414.
http://dx.doi.org/10.1007/BF02747238
|
[41]
|
Ryu, J., Priya, S., Uchino, K. and Kim, H.-E. (2002) Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials. Journal of Electroceramics, 8, 107-119. http://dx.doi.org/10.1023/A:1020599728432
|
[42]
|
Fang, D., Wan, Y.-P., Feng, X. and Soh, A.K. (2008) Deformation and Fracture of Functional Ferromagnetics. ASME Applied Mechanics Review, 61, Article ID: 020803.
|
[43]
|
Sihvola, A. (2007) Metamaterials in Electromagnetics. Metamaterials, 1, 2-11.
http://dx.doi.org/10.1016/j.metmat.2007.02.003
|
[44]
|
Hill (Spaldin), N.A. (2000) Why Are There So Few Magnetoelectric Materials? Journal of Physical Chemistry B, 104, 6697-6709.
|
[45]
|
Smolenskii, G.A. and Chupis, I.E. (1982) Ferroelectromagnets. Soviet Physics Uspekhi, 25, 475-493.
http://dx.doi.org/10.1070/PU1982v025n07ABEH004570
|
[46]
|
Ribichini, R., Cegla, F., Nagy, P.B. and Cawley, P. (2010) Quantitative Modeling of the Transduction of Electromagnetic Acoustic Transducers Operating on Ferromagnetic Media. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57, 2808-2817. http://dx.doi.org/10.1109/TUFFC.2010.1754
|
[47]
|
Thompson, R.B. (1990) Physical Principles of Measurements with EMAT Transducers. In: Mason, W.P. and Thurston, R.N., Eds., Physical Acoustics, Volume 19, Academic Press, New York, 157-200.
http://dx.doi.org/10.1016/b978-0-12-477919-8.50010-8
|
[48]
|
Hirao, M. and Ogi, H. (2003) EMATs for Science and Industry: Noncontacting Ultrasonic Measurements. Kluwer Academic, Boston. http://dx.doi.org/10.1007/978-1-4757-3743-1
|
[49]
|
van Suchtelen, J. (1972) Product Properties: A New Application of Composite Materials. Philips Research Reports, 27, 28-37.
|
[50]
|
van den Boomgaard, J., Terrell, D.R., Born, R.A.J. and Giller, H.F.J.I. (1974) In-Situ Grown Eutectic Magnetoelectric Composite-Material. 1. Composition and Unidirectional Solidification. Journal of Materials Science, 9, 1705-1709.
http://dx.doi.org/10.1007/BF00540770
|
[51]
|
van Run, A.M.J.G., Terrell, D.R. and Scholing, J.H. (1974) In-Situ Grown Eutectic Magnetoelectric Composite-Material. 2. Physical Properties. Journal of Materials Science, 9, 1710-1714.
http://dx.doi.org/10.1007/BF00540771
|
[52]
|
van den Boomgaard, J., van Run, A.M.J.G. and van Suchtelen, J. (1976) Piezoelectric-Piezomagnetic Composites with Magnetoelectric Effect. Ferroelectrics, 14, 727-728. http://dx.doi.org/10.1080/00150197608236711
|
[53]
|
Annigeri, A.R., Ganesan, N. and Swarnamani, S. (2006) Free Vibrations of Simply Supported Layered and Multiphase Magneto-Electro-Elastic Cylindrical Shells. Smart Materials and Structures, 15, 459-467.
http://dx.doi.org/10.1088/0964-1726/15/2/027
|
[54]
|
Aboudi, J. (2001) Micromechanical Analysis of Fully Coupled Electro-Magneto-Thermo-Elastic Multiphase Composites. Smart Materials and Structures, 10, 867-877. http://dx.doi.org/10.1088/0964-1726/10/5/303
|
[55]
|
Ramirez, F., Heyliger, P.R. and Pan, E. (2006) Free Vibration Response of Two-Dimensional Magneto-Electro-Elastic Laminated Plates. Journal of Sound and Vibration, 292, 626-644. http://dx.doi.org/10.1016/j.jsv.2005.08.004
|
[56]
|
Wang, B.-L. and Mai, Y.-W. (2007) Applicability of the Crack-Face Electromagnetic Boundary Conditions for Fracture of Magnetoelectroelastic Materials. International Journal of Solids and Structures, 44, 387-398.
http://dx.doi.org/10.1016/j.ijsolstr.2006.04.028
|
[57]
|
Liu, T.J.C. and Chue, C.-H. (2006) On the Singularities in a Bimaterial Magneto-Electro-Elastic Composite Wedge under Antiplane Deformation. Composite Structures, 72, 254-265. http://dx.doi.org/10.1016/j.compstruct.2004.11.009
|
[58]
|
Zakharenko, A.A. (2012) On Wave Characteristics of Piezoelectromagnetics. Pramana—Journal of Physics (Indian Academy of Science), 79, 275-285. http://dx.doi.org/10.1007/s12043-012-0308-3
|
[59]
|
Wang, Y.-Z., Li, F.-M., Huang, W.-H., Jiang, X., Wang, Y.-S. and Kishimoto, K. (2008) Wave Band Gaps in Two-Dimensional Piezoelectric/Piezomagnetic Phononic Crystals. International Journal of Solids and Structures, 45, 4203-4210. http://dx.doi.org/10.1016/j.ijsolstr.2008.03.001
|
[60]
|
Melkumyan, A. (2007) Twelve Shear Surface Waves Guided by Clamped/Free Boundaries in Magneto-Electro-Elastic Materials. International Journal of Solids and Structures, 44, 3594-3599.
http://dx.doi.org/10.1016/j.ijsolstr.2006.09.016
|
[61]
|
Zakharenko, A.A. (2010) Propagation of Seven New SH-SAWs in Piezoelectromagnetics of Class 6 mm. LAP LAMBERT Academic Publishing GmbH & Co. KG, Saarbruecken-Krasnoyarsk, 84 p.
|
[62]
|
Zakharenko, A.A. (2011) Seven New SH-SAWs in Cubic Piezoelectromagnetics. LAP LAMBERT Academic Publishing GmbH & Co. KG, Saarbruecken-Krasnoyarsk, 172 p.
|
[63]
|
Al’shits, V.I., Darinskii, A.N. and Lothe, J. (1992) On the Existence of Surface Waves in Half-infinite Anisotropic Elastic Media with Piezoelectric and Piezomagnetic Properties. Wave Motion, 16, 265-283.
http://dx.doi.org/10.1016/0165-2125(92)90033-X
|
[64]
|
Zakharenko, A.A. (2012) Twenty Two New Interfacial SH-Waves in Dissimilar PEMs. LAP LAMBERT Academic Publishing GmbH & Co. KG, Saarbruecken-Krasnoyarsk, 148 p.
|
[65]
|
Zakharenko, A.A. (2012) Thirty Two New SH-Waves Propagating in PEM Plates of Class 6 mm. LAP LAMBERT Academic Publishing GmbH & Co. KG, Saarbruecken-Krasnoyarsk, 162 p.
|
[66]
|
Auld, B.A. (1990) Acoustic Fields and Waves in Solids. 2nd Edition, Volumes I and II (Set of Two Volumes), Krieger Publishing Company, Malabar, 878 p.
|
[67]
|
Dieulesaint, E. and Royer, D. (1980) Elastic Waves in Solids: Applications to Signal Processing. John Wiley, New York and Chichester, 511 p.
|
[68]
|
Lardat, C., Maerfeld, C. and Tournois, P. (1971) Theory and Performance of Acoustical Dispersive Surface Wave Delay Lines. Proceedings of the IEEE, 59, 355-364. http://dx.doi.org/10.1109/PROC.1971.8177
|
[69]
|
Nye, J.F. (1989) Physical Properties of Crystals. Their Representation by Tensors and Matrices. Clarendon Press, Oxford, 385 p.
|
[70]
|
Newnham, R.E. (2005) Properties of Materials: Anisotropy, Symmetry, Structure (Kindle Edition). Oxford University Press Inc., Oxford and New York, 391 p.
|
[71]
|
Gulyaev, Y.V. (1998) Review of Shear Surface Acoustic Waves in Solids. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 45, 935-938. http://dx.doi.org/10.1109/58.710563
|
[72]
|
Bleustein, J.L. (1968) A New Surface Wave in Piezoelectric Materials. Applied Physics Letters, 13, 412-413.
http://dx.doi.org/10.1063/1.1652495
|
[73]
|
Gulyaev, Y.V. (1969) Electroacoustic Surface Waves in Solids. Soviet Physics Journal of Experimental and Theoretical Physics Letters, 9, 37-38.
|
[74]
|
Zakharenko, A.A. (2013) Peculiarities Study of Acoustic Waves’ Propagation in Piezoelectromagnetic (Composite) Materials. Canadian Journal of Pure & Applied Sciences, 7, 2459-2461.
|
[75]
|
Zakharenko, A.A. (2013) New Nondispersive SH-SAWs Guided by the Surface of Piezoelectromagnetics. Canadian Journal of Pure & Applied Sciences, 7, 2557-2570.
|
[76]
|
Zakharenko, A.A. (2014) Some Problems of Finding of Eigenvalues and Eigenvectors for SH-Wave Propagation in Transversely Isotropic Piezoelectromagnetics. Canadian Journal of Pure & Applied Sciences, 8, 2783-2787.
|
[77]
|
Kiang, J. and Tong, L. (2010) Nonlinear Magneto-Mechanical Finite Element Analysis of Ni-Mn-Ga Single Crystals. Smart Materials and Structures, 19, Article ID: 015017.
|
[78]
|
Zakharenko, A.A. (2011) Analytical Investigation of Surface Wave Characteristics of Piezoelectromagnetics of Class 6 mm. ISRN Applied Mathematics, 2011, Article ID: 408529.
|
[79]
|
Wang, B.L., Mai, Y.-W. and Niraula, O.P. (2007) A Horizontal Shear Surface Wave in Magnetoelectroelastic Materials. Philosophical Magazine Letters, 87, 53-58. http://dx.doi.org/10.1080/09500830601096908
|
[80]
|
Liu, J.-X., Fang, D.-N. and Liu, X.-L. (2007) A Shear Horizontal Surface Wave in Magnetoelectric Materials. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54, 1287-1289.
http://dx.doi.org/10.1109/TUFFC.2007.388
|
[81]
|
Zakharenko, A.A. (2015) On Existence of Eight New Interfacial SH-Waves in Dissimilar Piezoelectromagnetics of Class 6 mm. Meccanica, 50, 1923-1933. http://dx.doi.org/10.1007/s11012-015-0210-4
|