X-ray digital linear tomosynthesis imaging
Tsutomu Gomi, Hiroshi Hirano, Masahiro Nakajima, Tokuo Umeda
DOI: 10.4236/jbise.2011.46056   PDF    HTML     7,105 Downloads   13,775 Views   Citations

Abstract

Aims: The purpose of this review includes the fol-lowing: 1) to identify indications for volumetric X-ray digital linear tomosynthesis by using a filtered back projection (FBP) algorithm and 2) to compare X-ray digital linear tomosynthesis, X-ray digital ra-diography, conventional tomography, and computed tomography. Review: The methods include the fol-lowing: 1) an overview of the tomosynthesis system in comparison with conventional X-ray imaging tech-nology; 2) an overview of the properties of diagnostic imaging for the chest, hip joint, and temporomandibular joint when imaging overlying structures and their effect of various artificial images; and 3) a review of each system. Summary: Tomosynthesis is worthy of further evaluation because of its flexibility and ability to suppress streak artifacts through an appropriate choice of an FBP algorithm. Tomosynthesis may be considered the imaging technique of choice for investigation of bone changes and detection of pulmonary nodules. Understanding the potential of tomosynthesis imaging will improve diagnostic accuracy in clinical applications.

Share and Cite:

Gomi, T. , Hirano, H. , Nakajima, M. and Umeda, T. (2011) X-ray digital linear tomosynthesis imaging. Journal of Biomedical Science and Engineering, 4, 443-453. doi: 10.4236/jbise.2011.46056.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Ziedses des Plante, B.G. (1932) Eine neue methode zur differenzierung in der roentgenographie (planigraphie). Acta Radiologica, 13, 182-192. doi:10.3109/00016923209135135
[2] Grant, D.G. (1972) Tomosynthesis: a three-dimensional radiographic imaging technique. IEEE Transactions on Bio-Medical Engineering, 19, 20-28. doi:10.1109/TBME.1972.324154
[3] Stiel, G., Stiel, L.G., Klotz, E., et al. (1993) Digital flashing tomosynthesis: a promising technique for angiographic screening. IEEE Transactions on Medical Imaging, 12, 314-321. doi:10.1109/42.232261
[4] Warp, R.J., Godfrey, D.G. and Dobbins, J.T. (2000) Applications of matrix inverse tomosynthesis. Procee- dings of SPIE, 3977, 376-383.
[5] Duryea, J., Dobbins, J.T. and Lynch, J.A. (2003) Digital tomosynthesis of hand joints for arthritis assessment. Medical Physics, 30, 325-333. doi:10.1118/1.1543573
[6] Sone, S., Kasuga, T., Sakai, F., et al. (1995) Image processing in the digital tomosynthesis for pulmonary imaging. European Radiology, 5, 96-101. doi:10.1007/BF00178089
[7] Badea, C., Kolitsi, Z. and Pallikarakis, N. (2001) A 3D imaging system for dental imaging based on digital tomosynthesis and cone beam CT. Proceedings International Federation for Medical and Biological Engineering, 2, 739-741.
[8] Niklason, L.T., Christian, B.T., Niklason, L.E., et al. (1997) Digital tomosynthesis in breast imaging. Radiology, 205, 399-406.
[9] Dobbins, J.T. III and Godfrey, D.J. (2003) Digital x-ray tomosynthesis: curent state of the art and clinical potential. Physics in Medicine and Biology, 48, R65-106. doi:10.1088/0031-9155/48/19/R01
[10] Kak, A. and Slaney, M. (1988) Principles of computerized tomographic imaging. IEEE.
[11] Grangeat, P. (1991) Mathematical framework of cone- beam 3D reconstruction via the first derivative of the Radon transform. Math Methods Tomogr, 1497, 66-97. doi:10.1007/BFb0084509
[12] Feldkamp, L.A., Davis, L.C. and Kress, J.W. (1984) Practical cone-beam algorithm. Journal of the Optical Society of America, 1, 612-619. doi:10.1364/JOSAA.1.000612
[13] Ruttimann, U., Groenhuis, R. and Webber, R. (1984) Restoration of digital multilane tomosynthesis by a constrained iteration method. IEEE Transactions on Medical Imaging, MI-3, 141-148.doi:10.1109/TMI.1984.4307670
[14] Bleuet, P., Guillemaud, R., Magin, I., et al. (2002) An adapted fan volume sampling scheme for 3D algebraic reconstruction in linear tomosynthesis. IEEE Transactions on Nuclear Science, 3, 2366-2372. doi:10.1109/TNS.2002.803683
[15] Gomi, T. and Hirano, H. (2008) Clinical potential of digital linear tomosynthesis imaging of total joint artroplasty. Journal of Digital Imaging, 21, 312-322. doi:10.1007/s10278-007-9040-9
[16] Lauritsch, G. and Harer, W.H. (1998) A theoretical framework for filtered backprojection in tomosynthesis. Proceedings of SPIE, 3338, 1127-1137. doi:10.1117/12.310839
[17] Hsieh, J. (1995) Image artifacts; causes; and correction. In: Goleman, L.W. and Fowlkes, J.B., Eds., Medical CT and ultrasound; current technology and applications, Advanced Medical Publishing, Madison, 487-518.
[18] Kamel, E.M., Burger, C., Buck, A., et al. (2003) Impact of metallic dental implants on CT-based attenuation correction in a combined PET/CT scanner. European Radiology, 13, 724-728. doi:10.1007/s00330-002-1564-2
[19] Wang, G., Snyder, D.L., O’Sullivan, J.A., et al. (1996) Iterative debluring for metal artifacts reduction. IEEE Transactions on Medical Imaging, 15, 657-664. doi:10.1109/42.538943
[20] Wang, G., Vannier, M.W. and Cheng, P.C. (1999) X-ray coneeam tomography for metal artifacts reduction and local region reconstruction. Microscopy and Microanalysis, 5, 58-65. doi:10.1017/S1431927699000057
[21] Wang, G., Frei, T. and Vannier, M.W. (2000) A fast iterative algorithm for metal artifact reduction in x-ray CT. Academic Radiology, 7, 607-614. doi:10.1016/S1076-6332(00)80576-0
[22] Man, B. De, Nuyts, J., Dupont, P., et al. (2000) Reduction of metal streak artifacts in x-ray computed tomography using a transmission maximum a posteriori algorithm. IEEE Transactions on Nuclear Science, 47, 997-981. doi:10.1109/23.856534
[23] Robertson, D.D., Yuan, J., Wang, G., et al. (1997) Total hip prosthesis metal-artifact suppression using iterative deblurring reconstruction. Journal of Computer Assisted Tomography, 21, 293-298. doi:10.1097/00004728-199703000-00024
[24] Gomi, T., Hirano, H. and Umeda, T. (2009) Evaluation of the X-ray digital linear tomosynthesis reconstruction processing method for metal artifact reduction. Computerized Medical Imaging and Graphics, 33, 257-274. doi:10.1016/j.compmedimag.2009.01.004
[25] Stevens, G.M., Fahrig, R. and Pelc, N.J. (2001) Filtered backprojection for modifying the impulse response of circular tomosynthesis. Medical Physics, 28, 372-379. doi:10.1118/1.1350588
[26] Stevens, G.M., Birdwell, R.L., Beaulieu, C.F., et al. (2003) Circular tomosynthesis: potential in imaging of breast and upper cervical spine-preliminary phantom and in vitro study. Radiology, 228, 569-575. doi:10.1148/radiol.2282020295
[27] Gomi, T., Yokoi, N. and Hirano, H. (2007) Evaluation of digital linear tomosynthesis imaging of the temopro- mandibular joint: initial clinical experience andevaluation. Dentomaxillofac Radiology, 36, 514-521. doi:10.1259/dmfr/26026102
[28] Yankelevitz, D.F., Reeves, A.P., Kostis, W.J., Zhao, B. and Henschke, C.I. (2000) Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation. Radiology, 217, 251-256.
[29] Vikgren, J., Zachrisson, S., Svalkvist, A., et al. (2008) Comparison of chest tomosynthesis and chest radiography for detection of pulmonary nodules: human observer study of clinical cases. Radiology, 249, 1034- 1041. doi:10.1148/radiol.2492080304., doi:10.1080/02841850903085584
[30] Dobbins, J.T. III, Mcadams, H.P., Song, J.W., et al. (2008) Digital tomosynthesis of the chest for lung nodule detection: interim sensitivity results from an ongoing NIH-sponsored trial. Medical Physics, 35, 2554- 2557. doi:10.1118/1.2937277
[31] Johnsson, A.A., Vikgren, J., Salkvist, A., et al. (2010) Overview of two years of clinical experience of chest tomosynthesis at sahlgrenska university hospital. Radiation Protection Dosimetry, 139, 124-129. doi:10.1093/rpd/ncq059
[32] Godwin, J.D. (1983) The solitary pulmonary nodule. Radiologic Clinics of North America, 21, 709-721.
[33] Littleton, J.T. (1983) Pluridirectional tomography in diagnosis and management of early bronchogenic carcinoma. In: Little, J.T. and Durizch, M.L., Sectional imaging methods. A comparison, University Park Press, Baltimore, 155.
[34] Siegelman, S.S., Khouri, N.F., Leo, F.P., et al. (1986) Solitary pulmonary nodules. CT assessment. Radiology, 160, 307-312.
[35] Siegelman, S.S., Zerhouni, E,A., Loe, F.P., et al. (1980) CT of the solitary pulmonary nodule. American Journal of Roentgenology, 135, 1-13.
[36] Zerhouni, E.A., Caskey, C. and Khouri, N.F. (1988) The pulmonary nodules. Seminars in Ultrasound, CT, and MR, 9, 67-78.
[37] Fraser, R.G., Hickey, N.M., Niklason, L.T., et al. (1986) Calcification in pulmonary nodules. Detection with dual-energy digital radiography. Radiology, 160, 595-601.
[38] McLendon, R.E., Roggli, V.L., Foster, W.L. Jr., et al. (1985) Carcinoma of the lung with osseous stromal metaplasia. Archives of Pathology & Laboratory Medicine, 109, 1051-1053.
[39] O’Keefe, M.E. Jr., Good, C.A. and McNonald, J.R. (1957) Calcification in solitary nodules of the lung. American Journal of Roentgenology, 77, 1023-1033.
[40] Burgener, F.A. and Kormano, M. (1991) Differential diagnosis in conventional radiology. Thieme Verlag, Berlin.
[41] Brody, W.R., Butt, G., Hall. A. and Macovski, A. (1981) A method for selective tissue and bone visualization using dual-energy scanned projection radiography. Medical Physics, 8, 659-667. doi:10.1118/1.594957
[42] Hickey, N.M., Niklason, L.T., Sabbagh, E., et al. (1987)Dual-energy digital radiographic quantification of cal-cium in simulated pulmonary nodules. American Journal of Roentgenology, 148, 19-24.
[43] Ishigaki, T., Sakuma, S. and Ikeda, M. (1988) One-shot dual-energy subtraction chest imaging with computed radiography. Radiology, 168, 67-72.
[44] Nishitani, H., Umezu, Y., Ogawa, K., et al. (1986) Dual-energy projection radiography using condenser X-ray generator and digital radiography apparatus. Radiology, 161, 533-535.
[45] Gomi, T., Nakajima, M., Fujiwara, H., et al. (2011) Comparison of chest dual-energy subtraction digital tomosynthesis imaging and dual-energy subtraction radiography to detect simulated pulmonary nodules with and without calcifications: a phantom study. Academic Radiology, 18, 191-196. doi:10.1016/j.acra.2010.09.021
[46] Smith, D.B. (1985) Image reconstruction from cone- beam projections: necessary and sufficient conditions and reconstruction methods. IEEE Transactions on Medical Imaging, 4, 14-25. doi:10.1109/TMI.1985.4307689
[47] Ishigaki, T., Sakuma, S., Horikawa, Y., et al. (1986) One-shot dual-energy subtraction imaging. Radiology, 161, 271-273.
[48] McLendon, R.E., Roggli, V.L., Foster, W.L. Jr., et al. (1985) Carcinoma of the lung with osseous stromal metaplasia. Archives of Pathology & Laboratory Medi-cine, 109, 1051-1053.
[49] Siegelman, S.S., Zerhouni, E,A., Loe, F.P., et al. (1980) CT of the solitary pulmonary nodule. American Journal of Roentgenology, 135, 1-13.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.