[1]
|
A. Harten, “High Resolution Schemes for Hyperbolic Conser-vation Laws,” Journal of Computational Physics Vol. 49, No. 3, 1983, pp. 357-393.
doi:10.1016/0021-9991(83)90136-5
|
[2]
|
S. Osher and S. Chakravarthy, “High Resolution Schemes and the Entropy Condition,” SIAM Journal on Numerical Analysis, Vol. 21, No. 5, 1984, pp. 955-984.
doi:10.1137/0721060
|
[3]
|
P. K. Sweby, “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws,” SIAM Journal on Numerical Analysis, Vol. 21, No. 5, 1984, pp. 995-1011. doi:10.1137/0721062
|
[4]
|
B. Cockburn and C. W. Shu, “TVB Runge-Kutta Local Projection Discon-tinuous Galerkin Finite Element Method for Conservation Laws II: General Framework,” Mathematics of Computation, Vol. 52, No. 186, 1989, pp. 411-435.
|
[5]
|
S. Gottlieb, D. I. Ketcheson and C. W. Shu, “High Order Strong Stability Pre-serving Time Discretization,” Journal of Scientific Computing, Vol. 38, No. 3, 2009, pp. 251-289.
|
[6]
|
C. Huang, “Strong Stability Preserving Hybrid Methods,” Applied Numerical Mathematics, Vol. 59, No. 5, 2009, pp. 891-904. doi:10.1016/j.apnum.2008.03.030
|
[7]
|
T. Nguyen-Ba, E. Kengne and R. Vaillancourt, “One-Step 4-Stage Her-mite-Birkhoff-Taylor ODE Solver of Order 12,” The Canadian Applied Mathematics Quarterly, Vol. 16, No. 1, 2008, pp. 77-94.
|
[8]
|
S. Gottlieb, C. W. Shu and E. Tadmor, “Strong Stability- Preserving Highorder Time Discretization Methods,” SIAM Review, Vol. 43, No. 1, 2001, pp. 8-112
doi:10.1137/S003614450036757X
|
[9]
|
S. J. Ruuth and R. J. Spiteri, “High-Order Strong-Stability-Preserving Runge-Kutta Methods with Down-Biased Spatial Discretizations,” SIAM Journal on Numerical Analysis, Vol. 42, No. 3, 2004, pp. 974-996.
doi:10.1137/S0036142902419284
|
[10]
|
S. Gottlieb, “On High Order Strong Stability Preserving Runge-Kuttaand Multi Step Time Discretizations,” Journal of Scientific Computing, Vol. 25, No. 1-2, 2005, pp. 105-128.
|
[11]
|
C. W. Shu and S. Osher, “Efficient Implementation of Essentially Nonoscillatory Shock-Capturing Schemes,” Journal of Scientific Computing, Vol. 77, No. 2, 1988, pp. 439-471. doi:10.1016/0021-9991(88)90177-5
|
[12]
|
C. W. Shu, “To-tal-Variation-Diminishing Time Discretizations,” SIAM Jour-nal on Numerical Analysis, Vol. 9, No. 6, 1988, pp. 1073-1084. doi:10.1137/0909073
|
[13]
|
S. Gottlieb and C. W. Shu, “Total Variation Diminishing Runge-Kutta Schemes,” Mathematics of Computation, Vol. 67, No. 221, 1998, pp. 73-85.
doi:10.1090/S0025-5718-98-00913-2
|
[14]
|
R. J. Spiteri and S. J. Ruth, “A New Class of Optimal High-Order Strong-Stability-Preserving Time-Stepping Schemes,” SIAM Journal on Numerical Analysis, Vol. 40, No. 2, 2002, pp. 469-491.
doi:10.1137/S0036142901389025
|
[15]
|
R. J. Spiteri, S. J. Ruuh, “Nolinear Evoluton Using Optimal Fourth-Order Strong-Stability-Preserving Runge- Kutta Methods, Journal of Mathematics and Computers in Simulation, Vol. 62, No. 1-2, 2003, pp. 125-135. doi:10.1016/S0378-4754(02)00179-9
|
[16]
|
S. J. Ruuth and R. J. Piteri, “Two Barriers on Strong- Stability-Preserving Time Discretization Methods,” Journal on Scientific Computing, Vol. 17, No. 1-4, 2002, pp. 211-220. doi:10.1023/A:1015156832269
|
[17]
|
S. J. Ruuth, “Global Op-timization of Explicit Strong- Stability-Preserving Runge-Kutta Methods,” Mathematics of Computation, Vol. 75, No. 253, 2006, pp. 183-207.
doi:10.1090/S0025-5718-05-01772-2
|
[18]
|
W. Hundsdorfer, S. J. Ruuth and R. J. Spiteri, “Monotonicity Preserving Linear Multistep Methods,” SIAM Journal on Numerical Analysis, Vol. 41, No. , 2003, pp. 605-623. doi:10.1137/S0036142902406326
|
[19]
|
I. Higueras, “On Strong Stability Preserving Methods,” Journal of Scientific Computing, Vol. 21, No. , 2004, pp. 193-223. doi:10.1023/B:JOMP.0000030075.59237.61
|
[20]
|
S. J. Ruuth and W. Hundsdorfer, “High-Order Linear Multistep Methods with General Monotonicity and Boundedness Properties,” Journal of Computational Physics, Vol. 209, No. 1, 2005, pp. 226-248.
doi:10.1016/j.jcp.2005.02.029
|
[21]
|
G. Jiang and C. W. Shu, “Efficient Implementation of Weighted ENO Schemes,” Jour-nal of Computational Physics, Vol. 126, No. 1, 1996, pp. 202-228.
doi:10.1006/jcph.1996.0130
|
[22]
|
C. Laney, “Computational Gasdynamics,” Cambridge University Press, Cambridge, 1998.
doi:10.1017/CBO9780511605604
|