[1]
|
Forman, H.J., Zhang, H. and Rinna, A. (2009) Glutathione: Overview of Its Protective Roles, Measurement, and Biosynthesis. Molecular Aspects of Medicine, 30, 1-12. http://dx.doi.org/10.1016/j.mam.2008.08.006
|
[2]
|
Slivka, A., Spina, M.B. and Cohen, G. (1987) Reduced and Oxidized Glutathione in Human and Monkey Brain. Neuroscience Letters, 74, 112-118. http://dx.doi.org/10.1016/0304-3940(87)90061-9
|
[3]
|
Chinta, S.J., Kumar, M.J., Hsu, M., Rajagopalan, S., Kaur, D., et al. (2007) Inducible Alterations of Glutathione Levels in Adult Dopaminergic Midbrain Neurons Result in Nigrostriatal Degeneration. Journal of Neuroscience, 27, 13997-14006. http://dx.doi.org/10.1523/JNEUROSCI.3885-07.2007
|
[4]
|
Oliveira, A.A., Almeida, J.P.C., Freitas, R.M., Nascimento, V.S., Aguiar, L.M.V., et al. (2007) Effects of Levetiracetam in Peroxidation Level, Nitrite-Nitrate Formation and Antioxidant Enzymatic Activity in Mice Brain after Pilocarpine-Induced Seizures. Cellular and Molecular Neurobiology, 27, 395-406. http://dx.doi.org/10.1007/s10571-006-9132-y
|
[5]
|
Kohr, G., Eckardt, S., Lüddens, H., Monyer, H. and Seeburg, P.H. (1994) NMDA Receptor Channels: Subunit-Specific Potentiation by Reducing Agents. Neuron, 12, 1031-1040. http://dx.doi.org/10.1016/0896-6273(94)90311-5
|
[6]
|
Bodhinathan, K., Kumar, A. and Foster, T.C. (2010) Intracellular Redox State Alters NMDA Receptor Response during Aging through Ca2+/Calmodulin-Dependent Protein Kinase II. The Journal of Neuro-science, 30, 1914-1924. http://dx.doi.org/10.1523/JNEUROSCI.5485-09.2010
|
[7]
|
Ogita, K., Kitago, T., Nakamuta, H., Fukuda, Y., Koida, M., et al. (1986) Glutathione-Induced Inhibition of Na+- Independent and -Dependent Bindings of L-[3H] Glutamate in Rat Brain. Life Sciences, 39, 2411-2418. http://dx.doi.org/10.1016/0024-3205(86)90482-0
|
[8]
|
Patten, A.R., Brocardo, P.S., Sakiyama, C., Wortman, R.C., Noonan, A., et al. (2013) Impairments in Hippocampal Synaptic Plasticity Following Prenatal Ethanol Exposure Are Dependent on Glutathione Levels. Hippocampus, 23, 1463-1475. http://dx.doi.org/10.1002/hipo.22199
|
[9]
|
Robillard, J.M., Gordon, G.R., Choi, H.B., Christie, B.R. and MacVicar, B.A. (2011) Glutathione Restores the Mechanism of Synaptic Plasticity of the Adult. PLoS ONE, 6, e20676. http://dx.doi.org/10.1371/journal.pone.0020676
|
[10]
|
Bruce, A.J. and Baudry, M. (1995) Oxygen Free Radicals in Rat Limbic Structures after Kainite-Induced Seizures. Free Radical Biology and Medicine, 18, 993-1002. http://dx.doi.org/10.1016/0891-5849(94)00218-9
|
[11]
|
Freitas, R.M., Vasconcelos, S.M.M., Souza, F.C.F., Viana, G.S.B. and Fonteles, M.M.F. (2005) Oxidative Stress in the Hippocampus after Pilocarpine-Induced Status Epilepticus in Wistar Rats. FEBS Journal, 272, 1307-1312. http://dx.doi.org/10.1111/j.1742-4658.2004.04537.x
|
[12]
|
Dugan, L.L., Sensl, S.L., Canzoniero, L.M.T., Handran, S.D., Rothman, S.M., et al. (1995) Mitochondrial Production of Reactive Oxygen Species in Cortical Neurons Following Exposure to N-methyl-D-Aspartate. Journal of Neuroscience, 15, 6377-6388.
|
[13]
|
Wade, J.V., Olson, J.P., Samson, F.E., Nelson, S.R. and Pazdernik, T.L. (1988) A Possible Role for Taurine in Osmoregulation within the Brain. Journal of Neurochemistry, 51, 740-745. http://dx.doi.org/10.1111/j.1471-4159.1988.tb01807.x
|
[14]
|
El-Abhar, H.S. and El Gawad, H.M. (2003) Modulation of Cortical Nitric Oxide Synthase, Glutamate, and Redox State by Nifedipine and Taurine in PTZ-Kindled Mice. Epilepsia, 44, 276-281. http://dx.doi.org/10.1046/j.1528-1157.2003.22302.x
|
[15]
|
Huxtable, R.J. (1992) Physiological Actions of Taurine. Physiological Reviews, 72, 101-163.
|
[16]
|
Hagberg, H., Lehmann, A., Sandberg, M., Nystrom, B., Jacobson, I., et al. (1985) Ischemia-Induced Shift of Inhibitory and Excitatory Amino Acids from Intra- to Extracellular Compartments. Journal of Cerebral Blood Flow & Metabolism, 5, 413-419. http://dx.doi.org/10.1038/jcbfm.1985.56
|
[17]
|
Sandberg, M., Butcher, S.P. and Hagberg, H. (1986) Extracellular Overflow of Neuroactive Amino Acids during Severe Insulin-Induced Hypoglycemia: In Vivo Dialysis of the Rat Hippocampus. Journal of Neurochemistry, 47, 178-184. http://dx.doi.org/10.1111/j.1471-4159.1986.tb02847.x
|
[18]
|
Lo, E.H., Bosque-Hamilton, P. and Meng, W. (1998) Inhibition of Poly(ADP-Ribose) Polymerase: Reduction of Ischemic Injury and Attenuation of N-methyl-D-Aspartate-Induced Neurotransmitter Dysregulation. Stroke, 29, 830-836. http://dx.doi.org/10.1161/01.STR.29.4.830
|
[19]
|
Wallin, C., Weber, S.G. and Sandberg, M. (1999) Glutathione Efflux Induced by NMDA and Kainate: Implications in Neurotoxicity? Journal of Neurochemistry, 73, 1566-1572. http://dx.doi.org/10.1046/j.1471-4159.1999.0731566.x
|
[20]
|
Wallin, C., Abbas, A.K., Tranberg, M., Weber, S.G., Wigstrom, H. and Sandberg, M. (2003) Searching for Mechanisms of N-Methyl-D-Aspartate-Induced Glutathione Efflux in Organotypic Hippocampal Cultures. Neurochemical Research, 28, 281-291. http://dx.doi.org/10.1023/A:1022381318126
|
[21]
|
Lehmann, A., Isacsson, H. and Hamberger, A. (1983) Effects of in Vivo Administration of Kainic Acid on the Extracellular Amino Acid Pool in the Rabbit Hippocampus. Journal of Neurochemistry, 40, 1314-1320. http://dx.doi.org/10.1111/j.1471-4159.1983.tb13572.x
|
[22]
|
Keillor, J.W., Castonguay, R. and Lherbet, C. (2005) Gamma-Glutamyl Transpeptidase Substrate Specificity and Catalytic Mechanism. Methods in Enzymology, 401, 449-467. http://dx.doi.org/10.1016/S0076-6879(05)01027-X
|
[23]
|
Li, X., Wallin, C., Weber, S.G. and Sandberg, M. (1999) Net Efflux of Cysteine, Glutathione and Related Metabolites from Rat Hippocampal Slices during Oxygen/Glucose Deprivation: Dependence on Gamma-Glutamyl Transpeptidase. Brain Research, 815, 81-88. http://dx.doi.org/10.1016/S0006-8993(98)01097-X
|
[24]
|
Kim, H.C., Jhoo, W.K., Kim, W.K., Suh, J.H., Shin, E.J., et al. (2000) An Immunocytochemical Study of Mitochondrial Manganese-Superoxide Dismutase in the Rat Hippocampus after Kainite Administration. Neuroscience Letters, 281, 65-68. http://dx.doi.org/10.1016/S0304-3940(99)00969-6
|
[25]
|
Shih, Y.H., Chein, Y.C., Wang, J.Y. and Fu, Y.S. (2004) Ursolic Acid Protects Hippocampal Neurons against Kainite-Induced Excitotoxicity in Rats. Neuroscience Letters, 362, 136-140. http://dx.doi.org/10.1016/j.neulet.2004.03.011
|
[26]
|
Saito, T., Sakamoto, K., Koizumi, K. and Stewart, M. (2006) Repeatable Focal Seizure Suppression: A Rat Preparation to Study Consequences of Seizure Activity Based on Urethane Anesthesia and Reversible Carotid Artery Occlusion. Journal of Neuroscience Methods, 155, 241-250. http://dx.doi.org/10.1016/j.jneumeth.2006.01.021
|
[27]
|
Fedele, E., Varnier, G. and Paiteri, M. (1997) In Vivo Microdialysis Study of GABAA and GABAB Receptors Modulating the Glutamate Receptor/NO/Cyclic GMP Pathway in the Rat Hippocampus. Neuropharmacology, 36, 1405-1415. http://dx.doi.org/10.1016/S0028-3908(97)00113-5
|
[28]
|
Anschel, D.J., Ortega, E. and Fisher, R.S. (2004) Diazepam Prophylaxis for Bicuculline-Induced Seizures: A Rat Dose-Response Model. Neuroscience Letters, 356, 66-68. http://dx.doi.org/10.1016/j.neulet.2003.10.082
|
[29]
|
Engel Jr., J. (1992) Experimental Animal Models of Epilepsy: Classification and Relevance to Human Epileptic Phenomena. Epilepsy Research. Supplement, 8, 9-20.
|
[30]
|
Tranberg, M., Stridh, M.H., Guy, Y., Jilderos, B., Wigstrom, H., Weber, S.G. and Sandberg, M. (2004) NMDA-Receptor Mediated Efflux of N-Acetylaspartate: Physiological and/or Pathological Importance? Neurochemistry International, 45, 1195-1204. http://dx.doi.org/10.1016/j.neuint.2004.06.005
|
[31]
|
de Freitas, R.M. (2010) Lipoic Acid Alters δ-Aminolevulinic Dehydratase, Glutathione Peroxidase and Na+,K+-ATPase Activities and Glutathione-Reduced Levels in Rat Hippocampus after Pilocarpine-Induced Seizures. Cellular and Molecular Neurobiology, 30, 381-387. http://dx.doi.org/10.1007/s10571-009-9460-9
|
[32]
|
Li, Z.X., Yu, H.M. and Jiang, K.W. (2013) Tonic GABA Inhibition in Hippocampal Dentate Granule Cells: Its Regulation and Function in Temporal Lobe Epilepsies. Acta Physiologica, 209, 199-211. http://dx.doi.org/10.1111/apha.12148
|
[33]
|
Eyo, U.B., Peng, J., Swiatkowski, P., Mukherjee, A., Bispo, A. and Wu, L.J. (2014) Neuronal Hyperactivity Recruits Microglial Processes via Neuronal NMDA Receptors and Microglial P2Y12 Receptors after Status Epilepticus. Journal of Neuroscience, 34, 10528-10540. http://dx.doi.org/10.1523/JNEUROSCI.0416-14.2014
|
[34]
|
Zeevalk, G.D., Bernard, L.P., Sinha, C., Ehrhart, J. and Nicklas, W.J. (1998) Excitotoxicity and Oxidative Stress during Inhibition of Energy Metabolism. Developmental Neuroscience, 20, 444-453. http://dx.doi.org/10.1159/000017342
|
[35]
|
Wu, J.Y., Wu, H., Jin, Y., Wie, J., Sha, D., et al. (2009) Mechanism of Neuroprotective Function of Taurine. Advances in Experimental Medicine and Biology, 643, 169-179. http://dx.doi.org/10.1007/978-0-387-75681-3_17
|
[36]
|
Lehmann, A., Hagberg, H., Jacobson, I. and Hamberger, A. (1985) Effects of Status Epilepticus on Extracellular Amino Acids in the Hippocampus. Brain Research, 359, 147-151. http://dx.doi.org/10.1016/0006-8993(85)91422-2
|
[37]
|
Saransaari, P. and Oja, S.S. (2000) Taurine Release Modified by GABAergic Agents in Hippocampal Slices from Adult and Developing Mice. Amino Acids, 18, 17-30. http://dx.doi.org/10.1007/s007260050002
|
[38]
|
Gasull, T., Sarri, E., DeGregorio-Rocasolano, N. and Trullas, R. (2003) NMDA Receptor Overactivation Inhibits Phospholipid Synthesis by Decreasing Choline-Ethanolamine Phosphotransferase Activity. Journal of Neuroscience, 23, 4100-4107.
|
[39]
|
Stein, B.A. and Sapolsky, R.M. (1988) Chemical Adrenalectomy Reduces Hippocampal Damage Induced by Kainic Acid. Brain Research, 473, 175-180. http://dx.doi.org/10.1016/0006-8993(88)90332-0
|
[40]
|
Cavus, I., Kasoff, W.S., Cassaday, M.P., Jacob, R., Gueorguieva, R., et al. (2005) Extracellular Metabolites in the Cortex and Hippocampus of Epileptic Patients. Annals of Neurology, 57, 226-235. http://dx.doi.org/10.1002/ana.20380
|
[41]
|
Lévesque, M., Avoli, M. and Bernard, C. (2015) Animal Models of Temporal Lobe Epilepsy Following Systemic Chemoconvulsant Administration. Journal of Neuroscience Methods (In Press). http://dx.doi.org/10.1016/j.jneumeth.2015.03.009
|
[42]
|
Ludvig, N. and Tang, H.M. (2000) Cellular Electrophysiological Changes in the Hippocampus of Freely Behaving Rats during Local Microdialysis with Epileptogenic Concentration of N-Methyl-D-Aspartate. Brain Research Bulletin, 51, 233-240. http://dx.doi.org/10.1016/S0361-9230(99)00223-3
|
[43]
|
Stein, A.G., Eder, H.G., Blum, D.E., Drachev, A. and Fisher, R.S. (2000) An Automated Drug Delivery System for Focal Epilepsy. Epilepsy Research, 39, 103-114. http://dx.doi.org/10.1016/S0920-1211(99)00107-2
|
[44]
|
Jiang, D., Akopian, G., Ho, Y.S., Walsh, J.P. and Andersen, J.K. (2000) Chronic Brain Oxidation in a Glutathione Peroxidase Knockout Mouse Model Results in Increased Resistance to Induced Epileptic Seizures. Experimental Neurology, 164, 257-268. http://dx.doi.org/10.1006/exnr.2000.7431
|
[45]
|
Fico, A., Manganelli, G., Cigliano, L., Bergamo, P., Abrescia, P., et al. (2008) 2-deoxy-d-Ribose Induces Apoptosis by Inhibiting the Synthesis and Increasing the Efflux of Glutathione. Free Radical Biology and Medicine, 45, 211-217. http://dx.doi.org/10.1016/j.freeradbiomed.2008.04.017
|
[46]
|
Regan, R.F. and Guo, Y.P. (1999) Potentiation of Excitotoxic Injury by High Concentrations of Extracellular Reduced Glutathione. Neuroscience, 91, 463-470. http://dx.doi.org/10.1016/S0306-4522(98)00597-1
|
[47]
|
Aroniadou-Anderjaska, V., Pidoplichko, V.I., Figueiredo, T.H., Almeida-Suhett, C.P., Prager, E.M. and Braga, M.F.M. (2012) Presynaptic Facilitation of Glutamate Release in the Basolateral Amygdala: A Mechanism for the Anxiogenic and Seizurogenic Function of GluK1 Receptors. Neuroscience, 221, 157-169. http://dx.doi.org/10.1016/j.neuroscience.2012.07.006
|
[48]
|
Sierra-Paredes, G., Loureiro, A.I., Wright, L.C., Sierra-Marcuo, G. and Soares-da-Silva, P. (2014) Effects of Eslicarbazepine Acetate on Acute and Chronic Latrunculin A-Induced Seizures and Extracellular Amino Acid Levels in the Mouse Hippocampus. BMC Neuroscience, 15, 134. http://dx.doi.org/10.1186/s12868-014-0134-2
|
[49]
|
Oja, S.S. and Saransaari, P. (2013) Regulation of Taurine Release in the Hippocampus of Developing and Adult Mice. Advances in Experimental Medicine and Biology, 775, 135-143. http://dx.doi.org/10.1007/978-1-4614-6130-2_11
|
[50]
|
Junyent, E., Utrera, J., Romero, R., Pallas, M., Camins, A., Duque, D. and Auladell, C. (2009) Prevention of Epilepsy by Taurine Treatments in Mice Experimental Model. Journal of Neuroscience Research, 87, 1500-1508. http://dx.doi.org/10.1002/jnr.21950
|
[51]
|
Durelli, L. and Mutani, R. (1983) The Current Status of Taurine in Epilepsy. Clinical Neuropharmacology, 6, 37-48. http://dx.doi.org/10.1097/00002826-198303000-00004
|
[52]
|
Dzirkale, Z., Pupure, J., Rumaks, J., Svirskis, S., Vanina, M., et al. (2011) Comparative Study of Taurine and Tauropyrone: GABA Receptor Binding, Mitochondrial Processes and Behavior. Journal of Pharmacy and Pharmacology, 63, 230-237. http://dx.doi.org/10.1111/j.2042-7158.2010.01204.x
|
[53]
|
Seu, K.J., Cambrea, L.R., Everly, R.M. and Hovis, J.S. (2006) Influence of Lipid Chemistry on Membrane Fluidity: Tail and Headgroup Interactions. Biophysical Journal, 91, 3727-3735. http://dx.doi.org/10.1529/biophysj.106.084590
|
[54]
|
Lehmann, A. and Hamberger, A. (1984) A Possible Interrelationship between Extracellular Taurine and Phosphoethanolamine in the Hippocampus. Journal of Neurochemistry, 42, 1286-1290. http://dx.doi.org/10.1111/j.1471-4159.1984.tb02785.x
|
[55]
|
Huxtable, R.J., Crosswell, S. and Parker, D. (1989) Phospholipid Composition and Taurine Content of Synaptosomes in Developing Rat Brain. Neurochemistry International, 15, 233-238. http://dx.doi.org/10.1016/0197-0186(89)90106-X
|
[56]
|
Jirsa, V.K., Stacey, W.C., Quilichini, P.P., Ivanov, A.I. and Bernard, C. (2014) On the Nature of Seizure Dynamics. Brain, 137, 2210-2230. http://dx.doi.org/10.1093/brain/awu133
|
[57]
|
Klein, J.A. and Ackerman, S.L. (2003) Oxidative Stress, Cell Cycle, and Neurodegeneration. Journal of Clinical Investigation, 111, 785-793. http://dx.doi.org/10.1172/JCI200318182
|
[58]
|
Currais, A. and Maher, P. (2013) Functional Consequences of Age-Dependent Changes in Glutathione Status in the Brain. Antioxidants & Redox Signaling, 19, 813-822. http://dx.doi.org/10.1089/ars.2012.4996
|
[59]
|
Bragin, D.E., Zhou, B., Ramamoorthy, P., Müller, W.S., Connor, J.A. and Shi, H. (2010) Differential Changes of Glutathione Levels in Astrocytes and Neurons in Ischemic Brains by Two-Photon Imaging. Journal of Cerebral Blood Flow & Metabolism, 30, 734-738. http://dx.doi.org/10.1038/jcbfm.2010.9
|
[60]
|
Meyerson, B.A., Linderoth, B., Karlsson, H. and Ungerstedt, U. (1990) Microdialysis in the Human Brain: Extracellular Measurements in the Thalamus of Parkinsonian Patients. Life Sciences, 46, 301-308. http://dx.doi.org/10.1016/0024-3205(90)90037-R
|
[61]
|
Hillered, L., Persson, L., Pontén, U. and Ungerstedt, U. (1990) Neurometabolic Monitoring of the Ischaemic Human Brain Using Microdialysis. Acta Neurochirurgica, 102, 91-97. http://dx.doi.org/10.1007/BF01405420
|