[1]
|
Wieduwilt, M.J. and Moasser, M.M. (2008) The Epidermal Growth Factor Receptor Family: Biology Driving Targeted Therapeutics. Cellular and Molecular Life Sciences, 65, 1566-1584. http://dx.doi.org/10.1007/s00018-008-7440-8
|
[2]
|
Hynes, N.E. and MacDonald, G. (2009) ErbB Receptors and Signaling Pathways in Cancer. Current Opinion in Cell Biology, 21, 177-184. http://dx.doi.org/10.1016/j.ceb.2008.12.010
|
[3]
|
Milani, A., Sangiolo, D., Montemurro, F., Aglietta, M. and Valabrega, G. (2013) Active Immunotherapy in HER2 Overexpressing Breast Cancer: Current Status and Future Perspectives. Annals of Oncology, 24, 1740-1748. http://dx.doi.org/10.1093/annonc/mdt133
|
[4]
|
Tebbutt, N., Pedersen, M.W. and Johns, T.G. (2013) Targeting the ERBB Family in Cancer: Couples Therapy. Nature Reviews Cancer, 13, 663-673. http://dx.doi.org/10.1038/nrc3559
|
[5]
|
Yarden, Y. and Pines, G. (2012) The ERBB Network: At Last, Cancer Therapy Meets Systems Biology. Nature Reviews Cancer, 12, 553-563. http://dx.doi.org/10.1038/nrc3309
|
[6]
|
Kirouac, D.C., Du, J.Y., Lahdenranta, J., Overland, R., Yarar, D., Paragas, V., Pace E., McDonagh, C.F., Nielsen, U.B. and Onsum, M.D. (2013) Computational Modeling of ERBB2-Amplified Breast Cancer Identifies Combined ErbB2/3 Blockade as Superior to the Combination of MEK and AKT Inhibitors. Science Signaling, 6, ra68. http://dx.doi.org/10.1126/scisignal.2004008
|
[7]
|
Hynes, N.E. and Lane, H.A. (2005) ERBB Receptors and Cancer: The Complexity of Targeted Inhibitors. Nature Reviews Cancer, 5, 341-354. http://dx.doi.org/10.1038/nrc1609
|
[8]
|
Bailey, T.A., Luan, H., Clubb, R.J., Naramura, M., Band, V., Raja, S.M. and Band, H. (2011) Mechanisms of Trastuzumab Resistance in ErbB2-Driven Breast Cancer and Newer Opportunities to Overcome Therapy Resistance. Journal of Carcinogenesis, 10, 28. http://dx.doi.org/10.4103/1477-3163.90442
|
[9]
|
Jackson, C., Browell, D., Gautrey, H. and Tyson-Capper, A. (2013) Clinical Significance of HER-2 Splice Variants in Breast Cancer Progression and Drug Resistance. International Journal of Cell Biology, 2013, Article ID: 973584. http://dx.doi.org/10.1155/2013/973584
|
[10]
|
Hart, M.R., Su, H.Y., Broka, D., Goverdhan, A. and Schroeder, J.A. (2013) Inactive ERBB Receptors Cooperate with Reactive Oxygen Species to Suppress Cancer Progression. Molecular Therapy, 21, 1996-2007. http://dx.doi.org/10.1038/mt.2013.196
|
[11]
|
Yarden, Y. and Sliwkowski, M.X. (2001) Untangling the ErbB Signalling Network. Nature Reviews Molecular Cell Biology, 2, 127-137. http://dx.doi.org/10.1038/35052073
|
[12]
|
Montemurro, F. and Scaltriti, M. (2014) Biomarkers of Drugs Targeting HER-Family Signalling in Cancer. Journal of Pathology, 232, 219-229. http://dx.doi.org/10.1002/path.4269
|
[13]
|
Schechter, A.L., Hung, M.C., Vaidyanathan, L., Weinberg, R.A., Yang-Feng, T.L., Francke, U., Ullrich, A. and Coussens, L. (1985) The Neu Gene: An ErbB-Homologous Gene Distinct from and Unlinked to the Gene Encoding the EGF Receptor. Science, 229, 976-978. http://dx.doi.org/10.1126/science.2992090
|
[14]
|
Dendukuri, N., Khetani, K., McIsaac, M. and Brophy, J. (2007) Testing for HER2-Positive Breast Cancer: A Systematic Review and Cost-Effectiveness Analysis. Canadian Medical Association Journal, 176, 1429-1434. http://dx.doi.org/10.1503/cmaj.061011
|
[15]
|
Ross, J.S., Slodkowska, E.A., Symmans, W.F., Pusztai, L., Ravdin, P.M. and Hortobagyi, G.N. (2009) The HER-2 Receptor and Breast Cancer: Ten Years of Targeted Anti-HER-2 Therapy and Personalized Medicine. Oncologist, 14, 320-368. http://dx.doi.org/10.1634/theoncologist.2008-0230
|
[16]
|
Dawood, S., Broglio, K., Buzdar, A.U., Hortobagyi, G.N. and Giordano, S.H. (2010) Prognosis of Women with Metastatic Breast Cancer by HER2 Status and Trastuzumab Treatment: An Institutional-Based Review. Journal of Clinical Oncology, 28, 92-98. http://dx.doi.org/10.1200/JCO.2008.19.9844
|
[17]
|
Olson, E.M. (2012) Maximizing Human Epidermal Growth Factor Receptor 2 Inhibition: A New Oncologic Paradigm in the Era of Targeted Therapy. Journal of Clinical Oncology, 30, 1712-1714. http://dx.doi.org/10.1200/JCO.2011.40.2545
|
[18]
|
Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A. and McGuire, W.L. (1987) Human Breast Cancer: Correlation of Relapse and Survival with Amplification of the HER-2/Neu Oncogene. Science, 235, 177-182. http://dx.doi.org/10.1126/science.3798106
|
[19]
|
Kumar, G. and Badve, S. (2008) Milestones in the Discovery of HER2 Proto-Oncogene and Trastuzumab (Herceptin). Connection, 13, 9-14.
|
[20]
|
Carter, P., Presta, L., Gorman, C.M., Ridgway, J.B., Henner, D., Wong, W.L., Rowland, A.M., Kotts, C., Carver, M.E. and Shepard, H.M. (1992) Humanization of an Anti-p185HER2 Antibody for Human Cancer Therapy. Proceedings of the National Academy of Sciences of the United States of America, 89, 4285-4289. http://dx.doi.org/10.1073/pnas.89.10.4285
|
[21]
|
Hudis, C.A. (2007) Trastuzumab—Mechanism of Action and Use in Clinical Practice. New England Journal of Medicine, 357, 39-51. http://dx.doi.org/10.1056/NEJMra043186
|
[22]
|
Lollini, P.L. and Forni, G. (2003) Cancer Immunoprevention: Tracking Down Persistent Tumor Antigens. Trends in Immunology, 24, 62-66. http://dx.doi.org/10.1016/S1471-4906(02)00030-3
|
[23]
|
Finn, O.J. (2003) Cancer Vaccines: Between the Idea and the Reality. Nature Reviews Immunology, 3, 630-641. http://dx.doi.org/10.1038/nri1150
|
[24]
|
Lollini, P.L., Cavallo, F., Nanni, P. and Forni, G. (2006) Vaccines for Tumour Prevention. Nature Reviews Cancer, 6, 204-216. http://dx.doi.org/10.1038/nrc1815
|
[25]
|
Cavallo, F.D., Giovanni, C., Nanni, P., Forni, G. and Lollini, P.L. (2011) 2011: The Immune Hallmarks of Cancer. Cancer Immunology, Immunotherapy, 60, 319-326. http://dx.doi.org/10.1007/s00262-010-0968-0
|
[26]
|
Whittington, P.J., Radkevich, B.O., Jacob, J.B., Jones, R.F., Weise, A.M. and Wei, W.Z. (2009) Her-2 DNA versus Cell Vaccine: Immunogenicity and Anti-Tumor Activity. Cancer Immunology, Immunotherapy, 58, 759-767. http://dx.doi.org/10.1007/s00262-008-0599-x
|
[27]
|
Bodles-Brakhop, A.M., Heller, R. and Draghia-Akli, R. (2009) Electroporation for the Delivery of DNA-Based Vaccines and Immunotherapeutics: Current Clinical Developments. Molecular Therapy, 17, 585-592. http://dx.doi.org/10.1038/mt.2009.5
|
[28]
|
Liu, M.A. (2003) DNA Vaccines: A Review. Journal of Internal Medicine, 253, 402-410. http://dx.doi.org/10.1046/j.1365-2796.2003.01140.x
|
[29]
|
Radkevich-Brown, O., Jacob, J., Kershaw, M. and Wei, W.Z. (2009) Genetic Regulation of the Response to Her-2 DNA Vaccination in Human Her-2 Transgenic Mice. Cancer Research, 69, 212-218. http://dx.doi.org/10.1158/0008-5472.CAN-08-3092
|
[30]
|
Nguyen-Hoai, T., Kobelt, D., Hohn, O., Vu, M.D., Schlag, P.M., Dorken, B., Norley, S., Lipp, M., Walther, W., Pezzutto, A. and Westermann, J. (2012) HER2/Neu DNA Vaccination by Intradermal Gene Delivery in a Mouse Tumor Model: Gene Gun Is Superior to Jet Injector in Inducing CTL Responses and Protective Immunity. OncoImmunology, 1, 1537-1545. http://dx.doi.org/10.4161/onci.22563
|
[31]
|
Wei, W.Z., Shi, W.P., Galy, A., Lichlyter, D., Hernandez, S., Groner, B., Heilbrun, L. and Jones, R.F. (1999) Protection against Mammary Tumor Growth by Vaccination with Full-Length, Modified Human ErbB-2 DNA. International Journal of Cancer, 81, 748-754. http://dx.doi.org/10.1002/(SICI)1097-0215(19990531)81:5<748::AID-IJC14>3.0.CO;2-6
|
[32]
|
Pilon, S.A., Piechocki, M.P. and Wei, W.Z. (2001) Vaccination with Cytoplasmic ErbB-2 DNA Protects Mice from Mammary Tumor Growth without Anti-ErbB-2 Antibody. Journal of Immunology, 167, 3201-3206. http://dx.doi.org/10.4049/jimmunol.167.6.3201
|
[33]
|
Pupa, S.M., Iezzi, M., Di, C.E., Invernizzi, A., Cavallo, F., Meazza, R., Comes, A., Ferrini, S., Musiani, P. and Ménard, S. (2005) Inhibition of Mammary Carcinoma Development in HER-2/Neu Transgenic Mice through Induction of Autoimmunity by Xenogeneic DNA Vaccination. Cancer Research, 65, 1071-1078.
|
[34]
|
Jacob, J.B., Kong, Y.C., Nalbantoglu, I., Snower, D.P. and Wei, W.Z. (2009) Tumor Regression Following DNA Vaccination and Regulatory T Cell Depletion in Neu Transgenic Mice Leads to an Increased Risk for Autoimmunity. Journal of Immunology, 182, 5873-5881. http://dx.doi.org/10.4049/jimmunol.0804074
|
[35]
|
Fioretti, D., Iurescia, S., Fazio, V.M. and Rinaldi, M. (2010) DNA Vaccines: Developing New Strategies against Cancer. Journal of Biomedicine and Biotechnology, 2010, Article ID: 174378. http://dx.doi.org/10.1155/2010/174378
|
[36]
|
Chen, Y., Hu, D., Eling, D.J., Robbins, J. and Kipps, T.J. (1998) DNA Vaccines Encoding Full-Length or Truncated Neu Induce Protective Immunity against Neu-Expressing Mammary Tumors. Cancer Research, 58, 1965-1971.
|
[37]
|
Cao, J., Jin, Y., Li, W., Zhang, B., He, Y., Liu, H., Xia, N., Wei, H. and Yan, J. (2013) DNA Vaccines Targeting the Encoded Antigens to Dendritic Cells Induce Potent Antitumor Immunity in Mice. BMC Immunology, 14, 39. http://dx.doi.org/10.1186/1471-2172-14-39
|
[38]
|
Jacob, J.B., Quaglino, E., Radkevich-Brown, O., Jones, R.F., Piechocki, M.P., Reyes, J.D., et al. (2010) Combining Human and Rat Sequences in HER-2 DNA Vaccines Blunts Immune Tolerance and Drives Antitumor Immunity. Cancer Research, 70, 119-128. http://dx.doi.org/10.1158/0008-5472.CAN-09-2554
|
[39]
|
Occhipinti, S., Sponton, L., Rolla, S., Caorsi, C., Novarino, A., Donadio, M., Bustreo, S., Satolli, M.A., Pecchioni, C., Marchini, C., Amici, A., Cavallo, F., Cappello, P., Pierobon, D., Novelli, F. and Giovarelli, M. (2014) Chimeric Rat/Human HER2 Efficiently Circumvents HER2 Tolerance in Cancer Patients. Clinical Cancer Research, 20, 2910- 2921. http://dx.doi.org/10.1158/1078-0432.CCR-13-2663
|
[40]
|
Collison, L.W., Workman, C.J., Kuo, T.T., Boyd, K., Wang, Y., Vignali, K.M., Cross, R., Sehy, D., Blumberg, R.S. and Vignali, D.A. (2007) The Inhibitory Cytokine IL-35 Contributes to Regulatory T-Cell Function. Nature, 450, 566- 569. http://dx.doi.org/10.1038/nature06306
|
[41]
|
Wei, H., Wang, S., Zhang, D., Hou, S., Qian, W., Li, B., Guo, H., Kou, G., He, J., Wang, H. and Guo, Y. (2009) Targeted Delivery of Tumor Antigens to Activated Dendritic Cells via CD11c Molecules Induces Potent Antitumor Immunity in Mice. Clinical Cancer Research, 15, 4612-4621. http://dx.doi.org/10.1158/1078-0432.CCR-08-3321
|
[42]
|
Wei, W.Z., Jacob, J.B., Zielinski, J.F., Flynn, J.C., Shim, K.D., Alsharabi, G., Giraldo, A.A. and Kong, Y.C. (2005) Concurrent Induction of Antitumor Immunity and Autoimmune Thyroiditis in CD4+CD25+ Regulatory T Cell-De- pleted Mice. Cancer Research, 65, 8471-8478. http://dx.doi.org/10.1158/0008-5472.CAN-05-0934
|
[43]
|
de León, J., Fernández, A., Clavell, M., Labrada, M., Bebelagua, Y., Mesa, C. and Fernández, L.E. (2008) Differential Influence of the Tumour-Specific Non-Human Sialic Acid Containing GM3 Ganglioside on CD4+CD25 Effector and Naturally Occurring CD4+ CD25+ Regulatory T Cells Function. International Immunology, 20, 591-600. http://dx.doi.org/10.1093/intimm/dxn018
|
[44]
|
Rolla, S., Ria, F., Occhipinti, S., Di Sante, G., Iezzi, M., Spadaro, M., Nicolò, C., Ambrosino, E., Merighi, I.F., Musiani, P., Forni, G. and Cavallo, F. (2010) Erbb2 DNA Vaccine Combined with Regulatory T Cell Deletion Enhances Antibody Response and Reveals Latent Low-Avidity T Cells: Potential and Limits of Its Therapeutic Efficacy. Journal of Immunology, 184, 6124-6132. http://dx.doi.org/10.4049/jimmunol.0901215
|
[45]
|
Emens, L.A., Asquith, J.M., Leatherman, J.M., Kobrin, B.J., Petrik, S., Laiko, M., Levi, J., Daphtary, M.M., Biedrzycki, B., Wolff, A.C., Stearns, V., Disis, M.L., Ye, X., Piantadosi, S., Fetting, J.H., Davidson, N.E. and Jaffee, E.M. (2009) Timed Sequential Treatment with Cyclophosphamide, Doxorubicin, and an Allogeneic Granulocyte-Macrophage Colony-Stimulating Factor-Secreting Breast Tumor Vaccine: A Chemotherapy Dose-Ranging Factorial Study of Safety and Immune Activation. Journal of Clinical Oncology, 27, 5911-5918. http://dx.doi.org/10.1200/JCO.2009.23.3494
|
[46]
|
Norell, H., Poschke, I., Charo, J., Wei, W.Z., Erskine, C., Piechocki, M.P., Knutson, K.L., Bergh, J., Lidbrink, E. and Kiessling, R. (2010) Vaccination with a Plasmid DNA Encoding HER-2/Neu Together with Low Doses of GM-CSF and IL-2 in Patients with Metastatic Breast Carcinoma: A Pilot Clinical Trial. Journal of Translational Medicine, 8, 53. http://dx.doi.org/10.1186/1479-5876-8-53
|
[47]
|
Ladjemi, M.Z., Jacot, W., Chardès, T., Pèlegrin, A. and Navarro-Teulon, I. (2010) Anti-HER2 Vaccines: New Prospects for Breast Cancer Therapy. Cancer Immunology, Immunotherapy, 59, 1295-1312. http://dx.doi.org/10.1007/s00262-010-0869-2
|
[48]
|
Diaz, C.M., Chiappori, A., Aurisicchio, L., Bagchi, A., Clark, J., Dubey, S., Fridman, A., Fabregas, J.C., Marshall, J., Scarselli, E., La Monica, N., Ciliberto, G. and Montero, A.J. (2013) Phase I Studies of the Safety and Immunogenicity of Electroporated HER2/CEA DNA Vaccine Followed by Adenoviral Boost Immunization in Patients with Solid Tumors. Journal of Translational Medicine, 11, 62.
|
[49]
|
Provinciali, M., Smorlesi, A., Donnini, A., Bartozzi, B. and Amici, A. (2003) Low Effectiveness of DNA Vaccination against HER-2/Neu in Ageing. Vaccine, 21, 843-848. http://dx.doi.org/10.1016/S0264-410X(02)00530-3
|
[50]
|
Provinciali, M., Barucca, A., Pierpaoli, E., Orlando, F., Pierpaoli, S. and Smorlesi, A. (2012) In Vivo Electroporation Restores the Low Effectiveness of DNA Vaccination against HER-2/Neu in Aging. Cancer Immunology, Immunotherapy, 61, 363-371. http://dx.doi.org/10.1007/s00262-011-1107-2
|
[51]
|
Quaglino, E., Iezzi, M., Mastini, C., Amici, A., Pericle, F., Di Carlo, E., Pupa, S.M., De Giovanni, C., Spadaro, M., Curcio, C., Lollini, P.L., Musiani, P., Forni, G. and Cavallo, F. (2004) Electroporated DNA Vaccine Clears Away Multifocal Mammary Carcinomas in Her-2/Neu Transgenic Mice. Cancer Research, 64, 2858-2864. http://dx.doi.org/10.1158/0008-5472.CAN-03-2962
|
[52]
|
Aichele, P., Hengartner, H., Zinkernagel, R.M. and Schulz, M. (1990) Antiviral Cytotoxic T Cell Response Induced by in Vivo Priming with a Free Synthetic Peptide. Journal of Experimental Medicine, 171, 1815-1820. http://dx.doi.org/10.1084/jem.171.5.1815
|
[53]
|
Ossevoort, M.A., Feltkamp, M.C., Veen, K.J., Melief, C.J. and Kast, W.M. (1995) Dendritic Cells as Carriers for a Cytotoxic T-Lymphocyte Epitope-Based Peptide Vaccine in Protection against a Human Papillomavirus Type 16-Induced Tumor. Journal of Immunotherapy with Emphasis on Tumor Immunology, 18, 86-94. http://dx.doi.org/10.1097/00002371-199508000-00002
|
[54]
|
Melief, C.J. and Burg, S.H. (2008) Immunotherapy of Established (Pre)malignant Disease by Synthetic Long Peptide Vaccines. Nature Reviews Cancer, 8, 351-360. http://dx.doi.org/10.1038/nrc2373
|
[55]
|
Rosenberg, S.A., Yang, J.C. and Restifo, N.P. (2004) Cancer Immunotherapy: Moving beyond Current Vaccines. Nature Medicine, 10, 909-915. http://dx.doi.org/10.1038/nm1100
|
[56]
|
Bijker, M.S., Eeden, S.J., Franken, K.L., Melief, C.J., Offringa, R. and Burg, S.H. (2007) CD8+ CTL Priming by Exact Peptide Epitopes in Incomplete Freund’s Adjuvant Induces a Vanishing CTL Response, Whereas Long Peptides Induce Sustained CTL Reactivity. Journal of Immunology, 179, 5033-5040. http://dx.doi.org/10.4049/jimmunol.179.8.5033
|
[57]
|
Schulz, M., Zinkernagel, R.M. and Hengartner, H. (1991) Peptide-Induced Antiviral Protection by Cytotoxic T Cells. Proceedings of the National Academy of Sciences of the United States of America, 88, 991-993. http://dx.doi.org/10.1073/pnas.88.3.991
|
[58]
|
Fayolle, C., Deriaud, E. and Leclerc, C. (1991) In Vivo Induction of Cytotoxic T Cell Response by a Free Synthetic Peptide Requires CD4+ T Cell Help. Journal of Immunology, 147, 4069-4073.
|
[59]
|
Schuurhuis, D.H., Laban, S., Toes, R.E., Ricciardi-Castagnoli, P., Kleijmeer, M.J., Voort, E.I., Rea, D., Offringa, R., Geuze, H.J., Melief, C.J. and Ossendorp, F. (2000) Immature Dendritic Cells Acquire CD8+ Cytotoxic T Lymphocyte Priming Capacity upon Activation by T Helper Cell-Independent or -Dependent Stimuli. Journal of Experimental Medicine, 192, 145-150. http://dx.doi.org/10.1084/jem.192.1.145
|
[60]
|
Scheibenbogen, C., Schadendorf, D., Bechrakis, N.E., Nagorsen, D., Hofmann, U., Servetopoulou, F., Letsch, A., Philipp, A., Foerster, M.H., Schmittel, A., Thiel, E. and Keilholz, U. (2003) Effects of Granulocyte-Macrophage Colony-Stimulating Factor and Foreign Helper Protein as Immunologic Adjuvants on the T-Cell Response to Vaccination with Tyrosinase Peptides. International Journal of Cancer, 104, 188-194. http://dx.doi.org/10.1002/ijc.10961
|
[61]
|
Block, M.S., Suman, V.J., Nevala, W.K., Kottschade, L.A., Creagan, E.T., Kaur, J.S., Quevedo, J.F., McWilliams, R.R. and Markovic, S.N. (2011) Pilot Study of Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin-2 as Immune Adjuvants for a Melanoma Peptide Vaccine. Melanoma Research, 21, 438-445. http://dx.doi.org/10.1097/CMR.0b013e32834640c0
|
[62]
|
Welters, M.J., Bijker, M.S., Eeden, S.J., Franken, K.L., Melief, C.J., Offringa, R. and Burg, S.H. (2007) Multiple CD4 and CD8 T-Cell Activation Parameters Predict Vaccine Efficacy in Vivo Mediated by Individual DC-Activating Agonists. Vaccine, 25, 1379-1389. http://dx.doi.org/10.1016/j.vaccine.2006.10.049
|
[63]
|
Speiser, D.E., Liénard, D., Rufer, N., Rubio-Godoy, V., Rimoldi, D., Lejeune, F., Krieg, A.M., Cerottini, J.C. and Romero, P. (2005) Rapid and Strong Human CD8+ T Cell Responses to Vaccination with Peptide, IFA, and CpG Oligodeoxynucleotide 7909. Journal of Clinical Investigation, 115, 739-746. http://dx.doi.org/10.1172/JCI23373
|
[64]
|
Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F. and Lanzavecchia, A. (2005) Selected Toll-Like Receptor Agonist Combinations Synergistically Trigger a T Helper Type 1-Polarizing Program in Dendritic Cells. Nature Immunology, 6, 769-776. http://dx.doi.org/10.1038/ni1223
|
[65]
|
Boer, A.T., Diehl, L., van, Mierlo, G.J., Voort, E.I., Fransen, M.F., Krimpenfort, P., Melief, C.J., Offringa, R. and Toes, R.E. (2001) Longevity of Antigen Presentation and Activation Status of APC Are Decisive Factors in the Balance between CTL Immunity versus Tolerance. Journal of Immunology, 167, 2522-2528. http://dx.doi.org/10.4049/jimmunol.167.5.2522
|
[66]
|
Khan, S., Bijker, M.S., Weterings, J.J., Tanke, H.J., Adema, G.J., Drijfhout, J.W., Melief, C.J., Overkleeft, H.S., Marel, G.A., Filippov, D.V., Burg, S.H. and Ossendorp, F. (2007) Distinct Uptake Mechanisms but Similar Intracellular Processing of Two Different Toll-Like Receptor Ligand-Peptide Conjugates in Dendritic Cells. Journal of Biological Chemistry, 282, 21145-21159. http://dx.doi.org/10.1074/jbc.M701705200
|
[67]
|
Jackson, D.C., Lau, Y.F., Le, T., Suhrbier, A., Deliyannis, G., Cheers, C., Smith, C., Zeng, W. and Brown, L.E. (2004) A Totally Synthetic Vaccine of Generic Structure that Targets Toll-Like Receptor 2 on Dendritic Cells and Promotes Antibody or Cytotoxic T Cell Responses. Proceedings of the National Academy of Sciences of the United States of America, 101, 15440-15445. http://dx.doi.org/10.1073/pnas.0406740101
|
[68]
|
Zwaveling, S., Ferreira, M.S., Nouta, J., Johnson, M., Lipford, G.B., Offringa, R., Burg, S.H. and Melief, C.J. (2002) Established Human Papillomavirus Type 16-Expressing Tumors Are Effectively Eradicated Following Vaccination with Long Peptides. Journal of Immunology, 169, 350-358. http://dx.doi.org/10.4049/jimmunol.169.1.350
|
[69]
|
Peoples, G.E., Holmes, J.P., Hueman, M.T., Mittendorf, E.A., Amin, A., Khoo, S., Dehqanzada, Z.A., Gurney, J.M., Woll, M.M., Ryan, G.B., Storrer, C.E., Craig, D., Ioannides, C.G. and Ponniah, S. (2008) Combined Clinical Trial Results of a HER2/Neu (E75) Vaccine for the Prevention of Recurrence in High-Risk Breast Cancer Patients: U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clinical Cancer Research, 14, 797-803. http://dx.doi.org/10.1158/1078-0432.CCR-07-1448
|
[70]
|
Benavides, L.C., Sears, A.K., Gates, J.D., Clifton, G.T., Clive, K.S., Carmichael, M.G., Holmes, J.P., Mittendorf, E.A., Ponniah, S. and Peoples, G.E. (2011) Comparison of Different HER2/Neu Vaccines in Adjuvant Breast Cancer Trials: Implications for Dosing of Peptide Vaccines. Expert Review of Vaccines, 10, 201-210. http://dx.doi.org/10.1586/erv.10.167
|
[71]
|
Mittendorf, E.A., Clifton, G.T., Holmes, J.P., Clive, K.S., Patil, R., Benavides, L.C., Gates, J.D., Sears, A.K., Stojadinovic, A., Ponniah, S. and Peoples, G.E. (2012) Clinical Trial Results of the HER-2/Neu (E75) Vaccine to Prevent Breast Cancer Recurrence in High-Risk Patients: From US Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Cancer, 118, 2594-2602. http://dx.doi.org/10.1002/cncr.26574
|
[72]
|
Peoples, G.E., Goedegeburre, P.S., Smith, R., Linehan, D.C., Yoshino, I. and Eberlein, T.J. (1995) Breast and Ovarian Cancer-Specific Cytotoxic T Lymphocytes Recognize the Same HER2/Neu-Derived Peptide. Proceedings of the National Academy of Sciences of the United States of America, 92, 432-436. http://dx.doi.org/10.1073/pnas.92.2.432
|
[73]
|
Schneble, E.J., Berry, J.S., Trappey, F.A., Clifton, G.T., Ponniah, S., Mittendorf, E. and Peoples, G.E. (2014) The HER2 Peptide Nelipepimut-S (E75) Vaccine (NeuVax) in Breast Cancer Patients at Risk for Recurrence: Correlation of Immunologic Data with Clinical Response. Immunotherapy, 6, 519-531. http://dx.doi.org/10.2217/imt.14.22
|
[74]
|
Mittendorf, E.A., Clifton, G.T., Holmes, J.P., Schneble, E., Echo, D., Ponniah, S. and Peoples, G.E. (2014) Final Report of the Phase I/II Clinical Trial of the E75 (nelipepimut-S) Vaccine with Booster Inoculations to Prevent Disease Recurrence in High-Risk Breast Cancer Patients. Annals of Oncology, 25, 1735-1742. http://dx.doi.org/10.1093/annonc/mdu211
|
[75]
|
Zaks, T.Z. and Rosenberg, S.A. (1998) Immunization with a Peptide Epitope (p369-377) from HER-2/Neu Leads to Peptide-Specific Cytotoxic T Lymphocytes that Fail to Recognize HER-2/Neu+ Tumors. Cancer Research, 58, 4902- 4908.
|
[76]
|
Peoples, G.E., Gurney, J.M., Hueman, M.T., Woll, M.M., Ryan, G.B., Storrer, C.E., Fisher, C., Shriver, C.D., Ioannides, C.G. and Ponniah, S. (2005) Clinical Trial Results of a HER2/Neu (E75) Vaccine to Prevent Recurrence in High-Risk Breast Cancer Patients. Journal of Clinical Oncology, 23, 7536-7545. http://dx.doi.org/10.1200/JCO.2005.03.047
|
[77]
|
Knutson, K.L., Schiffman, K. and Disis, M.L. (2001) Immunization with a HER-2/Neu Helper Peptide Vaccine Generates HER-2/Neu CD8 T-Cell Immunity in Cancer Patients. Journal of Clinical Investigation, 107, 477-484. http://dx.doi.org/10.1172/JCI11752
|
[78]
|
Disis, M.L., Gooley, T.A., Rinn, K., Davis, D., Piepkorn, M., Cheever, M.A., Knutson, K.L. and Schiffman, K. (2002) Generation of T-Cell Immunity to the HER-2/Neu Protein after Active Immunization with HER-2/Neu Peptide-Based Vaccines. Journal of Clinical Oncology, 20, 2624-2632. http://dx.doi.org/10.1200/JCO.2002.06.171
|
[79]
|
Salazar, L.G., Goodell, V., O’Meara, M., Knutson, K., Dang, Y., Rosa, C., Guthrie, K. and Disis, M.L. (2009) Persistent Immunity and Survival after Immunization with a HER2/Neu (HER2) Vaccine. ASCO Meeting Abstracts, 27, 3010.
|
[80]
|
Amin, A., Benavides, L.C., Holmes, J.P., Gates, J.D., Carmichael, M.G., Hueman, M.T., Mittendorf, E.A., Storrer, C.E., Jama, Y.H., Craig, D., Stojadinovic, A., Ponniah, S. and Peoples, G.E. (2008) Assessment of Immunologic Response and Recurrence Patterns among Patients with Clinical Recurrence after Vaccination with a Preventive HER2/Neu Peptide Vaccine: From US Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Cancer Immunology, Immunotherapy, 57, 1817-1825. http://dx.doi.org/10.1007/s00262-008-0509-2
|
[81]
|
Clive, K.S., Tyler, J.A., Clifton, G.T., Holmes, J.P., Ponniah, S., Peoples, G.E. and Mittendorf, E.A. (2012) The GP2 Peptide: A HER2/Neu-Based Breast Cancer Vaccine. Journal of Surgical Oncology, 105, 452-458. http://dx.doi.org/10.1002/jso.21723
|
[82]
|
Mittendorf, E.A., Holmes, J.P., Ponniah, S. and Peoples, G.E. (2008) The E75 HER2/Neu Peptide Vaccine. Cancer Immunology, Immunotherapy, 57, 1511-1521. http://dx.doi.org/10.1007/s00262-008-0540-3
|
[83]
|
Dang, Y., Knutson, K.L., Goodell, V., Rosa, C., Salazar, L.G., Higgins, D., Childs, J. and Disis, M.L. (2007) Tumor Antigen-Specific T-Cell Expansion Is Greatly Facilitated by in Vivo Priming. Clinical Cancer Research, 13, 1883- 1891. http://dx.doi.org/10.1158/1078-0432.CCR-06-2083
|
[84]
|
Clifton, G.T., Holmes, J.P., Perez, S.A., Lorentz, D., Georgakopoulou, K., Benavides, L., Gates, J., Mittendorf, M., Ardavanis, A., Gritzapis, A., Ponniah, S., Papamichail, M. and Peoples, G. (2009) Interim Analysis of a Randomized Phase II Study of the Novel HER2/Neu Peptide (GP2) Vaccine to Prevent Breast Cancer Recurrence: United States Military Cancer Institute Clinical Trials Group Study I-05. Cancer Research, 69 (24 Suppl), Abstract No. 5110. http://dx.doi.org/10.1158/0008-5472.SABCS-09-5110
|
[85]
|
Hung, K., Hayashi, R., Lafond-Walker, A., Lowenstein, C., Pardoll, D. and Levitsky, H. (1998) The Central Role of CD4+ T Cells in the Antitumor Immune Response. Journal of Experimental Medicine, 188, 2357-2368. http://dx.doi.org/10.1084/jem.188.12.2357
|
[86]
|
Hu, H.M., Winter, H., Urba, W.J. and Fox, B.A. (2000) Divergent Roles for CD4+ T Cells in the Priming and Effector/ Memory Phases of Adoptive Immunotherapy. Journal of Immunology, 165, 4246-4253. http://dx.doi.org/10.4049/jimmunol.165.8.4246
|
[87]
|
Protti, M.P., Monte, L.D. and Lullo, G.D. (2014) Tumor Antigen-Specific CD4+ T Cells in Cancer Immunity: From Antigen Identification to Tumor Prognosis and Development of Therapeutic Strategies. Tissue Antigens, 83, 237-246. http://dx.doi.org/10.1111/tan.12329
|
[88]
|
Sears, A.K., Perez, S.A., Clifton, G.T., Benavides, L.C., Gates, J.D., Clive, K.S., Holmes, J.P., Shumway, N.M., Van Echo, D.C., Carmichael, M.G., Ponniah, S., Baxevanis, C.N., Mittendorf, E.A., Papamichail, M. and Peoples, G.E. (2011) AE37: A Novel T-Cell-Eliciting Vaccine for Breast Cancer. Expert Opinion on Biological Therapy, 11, 1543- 1550. http://dx.doi.org/10.1517/14712598.2011.616889
|
[89]
|
Wiedermann, U., Davis, A.B. and Zielinski, C.C. (2013) Vaccination for the Prevention and Treatment of Breast Cancer with Special Focus on Her-2/Neu Peptide Vaccines. Breast Cancer Research and Treatment, 138, 1-12. http://dx.doi.org/10.1007/s10549-013-2410-8
|
[90]
|
Mittendorf, E.A., Holmes, J.P., Murray, J.L., Hofe, E. and Peoples, G.E. (2009) CD4+ T Cells in Antitumor Immunity: Utility of an Li-Key HER2/Neu Hybrid Peptide Vaccine (AE37). Expert Opinion on Biological Therapy, 9, 71-78. http://dx.doi.org/10.1517/14712590802614538
|
[91]
|
Gates, J.D., Clifton, G.T., Benavides, L.C., Sears, A.K., Carmichael, M.G., Hueman, M.T., Holmes, J.P., Jama, Y.H., Mursal, M., Zacharia, A., Ciano, K., Khoo, S., Stojadinovic, A., Ponniah, S. and Peoples, G.E. (2010) Circulating Regulatory T Cells (CD4+CD25+FOXP3+) Decrease in Breast Cancer Patients after Vaccination with a Modified MHC Class II HER2/Neu (AE37) Peptide. Vaccine, 28, 7476-7482. http://dx.doi.org/10.1016/j.vaccine.2010.09.029
|
[92]
|
Xu, M. and Kallinteris, N.L. (2012) CD4+ T-Cell Activation for Immunotherapy of Malignancies Using Ii-Key/MHC Class II Epitope Hybrid Vaccines. Vaccine, 30, 2805-2810. http://dx.doi.org/10.1016/j.vaccine.2012.02.031
|
[93]
|
Holmes, J.P., Benavides, L.C., Gates, J.D., Carmichael, M.G., Hueman, M.T., Mittendorf, E.A., Murray, J.L., Amin, A., Craig, D., Hofe, E., Ponniah, S. and Peoples, G.E. (2008) Results of the First Phase I Clinical Trial of the Novel II-Key Hybrid Preventive HER-2/Neu Peptide (AE37) Vaccine. Journal of Clinical Oncology, 26, 3426-3433. http://dx.doi.org/10.1200/JCO.2007.15.7842
|
[94]
|
Baxevanis, C.N., Papamichail, M. and Perez, S.A. (2014) Therapeutic Cancer Vaccines: A Long and Winding Road to Success. Expert Review of Vaccines, 13, 131-144. http://dx.doi.org/10.1586/14760584.2014.852961
|
[95]
|
Zhang, X., Gordon, J.R. and Xiang, J. (2002) Advances in Dendritic Cell-Based Vaccine of Cancer. Cancer Biotherapy and Radiopharmaceuticals, 17, 601-619. http://dx.doi.org/10.1089/108497802320970217
|
[96]
|
Merad, M., Sathe, P., Helft, J., Miller, J. and Mortha, A. (2013) The Dendritic Cell Lineage: Ontogeny and Function of Dendritic Cells and Their Subsets in the Steady State and the Inflamed Setting. Annual Review of Immunology, 31, 563-604. http://dx.doi.org/10.1146/annurev-immunol-020711-074950
|
[97]
|
Fong, L. and Engleman, E.G. (2000) Dendritic Cells in Cancer Immunotherapy. Annual Review of Immunology, 18, 245-273. http://dx.doi.org/10.1146/annurev.immunol.18.1.245
|
[98]
|
Palucka, K. and Banchereau, J. (2012) Cancer Immunotherapy via Dendritic Cells. Nature Reviews Cancer, 12, 265-277. http://dx.doi.org/10.1038/nrc3258
|
[99]
|
Blattman, J.N. and Greenberg, P.D. (2004) Cancer Immunotherapy: A Treatment for the Masses. Science, 305, 200-205. http://dx.doi.org/10.1126/science.1100369
|
[100]
|
Galluzzi, L., Senovilla, L., Vacchelli, E., Eggermont, A., Fridman, W.H., Galon, J., Sautès-Fridman, C., Tartour, E., Zitvogel, L. and Kroemer, G. (2012) Trial Watch: Dendritic Cell-Based Interventions for Cancer Therapy. OncoImmunology, 1, 1111-1134. http://dx.doi.org/10.4161/onci.21494
|
[101]
|
Tyagi, R.K., Mangal, S., Garg, N. and Sharma, P.K. (2009) RNA-Based Immunotherapy of Cancer: Role and Therapeutic Implications of Dendritic Cells. Expert Review of Anticancer Therapy, 9, 97-114. http://dx.doi.org/10.1586/14737140.9.1.97
|
[102]
|
Zappasodi, R., Pupa, S.M., Ghedini, G.C., Bongarzone, I., Magni, M., Cabras, A.D., Colombo, M.P., Carlo-Stella, C., Gianni, A.M. and Nicola, M. (2010) Improved Clinical Outcome in Indolent B-Cell Lymphoma Patients Vaccinated with Autologous Tumor Cells Experiencing Immunogenic Death. Cancer Research, 70, 9062-9072. http://dx.doi.org/10.1158/0008-5472.CAN-10-1825
|
[103]
|
Vacchelli, E., Vitale, I., Eggermont, A., Fridman, W.H., Fuíková, J., Cremer, I., Galon, J., Tartour, E., Zitvogel, L., Kroemer, G. and Galluzzi, L. (2013) Trial Watch: Dendritic Cell-Based Interventions for Cancer Therapy. OncoImmunology, 2, e25771. http://dx.doi.org/10.4161/onci.25771
|
[104]
|
Sun, J.C. and Bevan, M.J. (2003) Defective CD8 T Cell Memory Following Acute Infection without CD4 T Cell Help. Science, 300, 339-342. http://dx.doi.org/10.1126/science.1083317
|
[105]
|
Dunkle, A., Dzhagalov, I., Gordy, C. and He, Y.W. (2013) Transfer of CD8+ T Cell Memory Using Bcl-2 as a Marker. Journal of Immunology, 190, 940-947. http://dx.doi.org/10.4049/jimmunol.1103481
|
[106]
|
Harlin, H., Meng, Y., Peterson, A.C., Zha, Y., Tretiakova, M., Slingluff, C., McKee, M. and Gajewski, T.F. (2009) Chemokine Expression in Melanoma Metastases Associated with CD8+ T-Cell Recruitment. Cancer Research, 69, 3077-3085. http://dx.doi.org/10.1158/0008-5472.CAN-08-2281
|
[107]
|
Sakai, Y., Morrison, B.J., Burke, J.D., Park, J.M., Terabe, M., Janik, J.E., Forni, G., Berzofsky, J.A. and Morris, J.C. (2004) Vaccination by Genetically Modified Dendritic Cells Expressing a Truncated Neu Oncogene Prevents Development of Breast Cancer in Transgenic Mice. Cancer Research, 64, 8022-8028. http://dx.doi.org/10.1158/0008-5472.CAN-03-3442
|
[108]
|
Viehl, C.T., Becker-Hapak, M., Lewis, J.S., Tanaka, Y., Liyanage, U.K., Linehan, D.C., Eberlein, T.J. and Goedegebuure, P.S. (2005) A Tat Fusion Protein-Based Tumor Vaccine for Breast Cancer. Annals of Surgical Oncology, 12, 517-525. http://dx.doi.org/10.1245/ASO.2005.06.028
|
[109]
|
Chen, Y., Emtage, P., Zhu, Q., Foley, R., Muller, W., Hitt, M., Gauldie, J. and Wan, Y. (2001) Induction of ErbB-2/Neu-Specific Protective and Therapeutic Antitumor Immunity Using Genetically Modified Dendritic Cells: Enhanced Efficacy by Cotransduction of Gene Encoding IL-12. Gene Therapy, 8, 316-323. http://dx.doi.org/10.1038/sj.gt.3301396
|
[110]
|
Tatsumi, T., Takehara, T., Yamaguchi, S., Sasakawa, A., Miyagi, T., Jinushi, M., Sakamori, R., Kohga, K., Uemura, A., Ohkawa, K., Storkus, W.J. and Hayashi, N. (2007) Injection of IL-12 Gene-Transduced Dendritic Cells into Mouse Liver Tumor Lesions Activates both Innate and Acquired Immunity. Gene Therapy, 14, 863-871. http://dx.doi.org/10.1038/sj.gt.3302941
|
[111]
|
Chen, Z., Huang, H., Chang, T., Carlsen, S., Saxena, A., Marr, R., Xing, Z. and Xiang, J. (2002) Enhanced HER-2/Neu-Specific Antitumor Immunity by Cotransduction of Mouse Dendritic Cells with Two Genes Encoding HER-2/Neu and Alpha Tumor Necrosis Factor. Cancer Gene Therapy, 9, 778-786. http://dx.doi.org/10.1038/sj.cgt.7700498
|
[112]
|
Chan, T., Sami, A., El-Gayed, A., Guo, X. and Xiang, J. (2006) HER-2/Neu-Gene Engineered Dendritic Cell Vaccine Stimulates Stronger HER-2/Neu-Specific Immune Responses Compared to DNA Vaccination. Gene Therapy, 13, 1391-1402. http://dx.doi.org/10.1038/sj.gt.3302797
|
[113]
|
Sas, S., Chan, T., Sami, A., El-Gayed, A. and Xiang, J. (2008) Vaccination of Fiber-Modified Adenovirus-Transfected Dendritic Cells to Express HER-2/Neu Stimulates Efficient HER-2/Neu-Specific Humoral and CTL Responses and Reduces Breast Carcinogenesis in Transgenic Mice. Cancer Gene Therapy, 15, 655-666. http://dx.doi.org/10.1038/cgt.2008.18
|
[114]
|
Brossart, P., Wirths, S., Stuhler, G., Reichardt, V.L., Kanz, L. and Brugger, W. (2000) Induction of Cytotoxic T-Lymphocyte Responses in Vivo after Vaccinations with Peptide-Pulsed Dendritic Cells. Blood, 96, 3102-3108.
|
[115]
|
Morse, M.A., Hobeika, A., Osada, T., Niedzwiecki, D., Marcom, P.K., Blackwell, K.L., Anders, C., Devi, G.R., Lyerly, H.K. and Clay, T.M. (2007) Long-Term Disease-Free Survival and T Cell and Antibody Responses in Women with High-Risk HER2+ Breast Cancer Following Vaccination against Her2. Journal of Translational Medicine, 5, 42. http://dx.doi.org/10.1186/1479-5876-5-42
|
[116]
|
Peethambaram, P.P., Melisko, M.E., Rinn, K.J., Alberts, S.R., Provost, N.M., Jones, L.A., Sims, R.B., Lin, L.R., Frohlich, M.W. and Park, J.W. (2009) A Phase I Trial of Immunotherapy with Lapuleucel-T (APC8024) in Patients with Refractory Metastatic Tumors that Express HER-2/Neu. Clinical Cancer Research, 15, 5937-5944. http://dx.doi.org/10.1158/1078-0432.CCR-08-3282
|
[117]
|
Disis, M., Dang, Y., Bates, N., Higgins, D., Childs, J., Slota, M., Coveler, A., Jackson, E., Waisman, J. and Salaza, L. (2010) Phase II Study of a HER-2/Neu (HER2) Intracellular Domain (ICD) Vaccine Given Concurrently with Trastuzumab in Patients with Newly Diagnosed Advanced Stage Breast Cancer. Cancer Research, 69, 5102. http://dx.doi.org/10.1158/0008-5472.SABCS-09-5102
|
[118]
|
Czerniecki, B.J., Koski, G.K., Koldovsky, U., Xu, S., Cohen, P.A., Mick, R., Nisenbaum, H., Pasha, T., Xu, M., Fox, K.R., Weinstein, S., Orel, S.G., Vonderheide, R., Coukos, G., DeMichele, A., Araujo, L., Spitz, F.R., Rosen, M., Levine, B.L., June, C. and Zhang, P.J. (2007) Targeting HER-2/Neu in Early Breast Cancer Development Using Dendritic Cells with Staged Interleukin-12 Burst Secretion. Cancer Research, 67, 1842-1852. http://dx.doi.org/10.1158/0008-5472.CAN-06-4038
|
[119]
|
Disis, M.L., Wallace, D.R., Gooley, T.A., Dang, Y., Slota, M., Lu, H., Coveler, A.L., Childs, J.S., Higgins, D.M., Fintak, P.A., dela Rosa, C., Tietje, K., Link, J., Waisman, J. and Salazar, L.G. (2009) Concurrent Trastuzumab and HER2/Neu-Specific Vaccination in Patients with Metastatic Breast Cancer. Journal of Clinical Oncology, 27, 4685- 4692. http://dx.doi.org/10.1200/JCO.2008.20.6789
|
[120]
|
Benavides, L.C., Gates, J.D., Carmichael, M.G., Patil, R., Holmes, J.P., Hueman, M.T., Mittendorf, E.A., Craig, D., Stojadinovic, A., Ponniah, S. and Peoples, G.E. (2009) The Impact of HER2/Neu Expression Level on Response to the E75 Vaccine: From U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clinical Cancer Research, 15, 2895-2904. http://dx.doi.org/10.1158/1078-0432.CCR-08-1126
|
[121]
|
Hamilton, E., Blackwell, K., Hobeika, A.C., Clay, T.M., Broadwater, G., Ren, X.R., Chen, W., Castro, H., Lehmann, F., Spector, N., Wei, J., Osada, T. and Lyerly, H.K. (2012) Phase I Clinical Trial of HER2-Specific Immunotherapy with Concomitant HER2 Kinase Inhibition. Journal of Translational Medicine, 10, 28. http://dx.doi.org/10.1186/1479-5876-10-28
|