[1]
|
Pérez-Lópeza, B. and Merkoçi, A. (2011) Nanomaterials Based Biosensors for Food Analysis Applications. Trends in Food Science & Technology, 22, 625-639. http://dx.doi.org/10.1016/j.tifs.2011.04.001
|
[2]
|
Ozdemir, C., Yeni, F., Odaci, D. and Timur, S. (2010) Electrochemical Glucose Biosensing by Pyranose Oxidase Immobilized in Gold Nanoparticle-Polyaniline/AgCl/Gelatin Nanocomposite Matrix. Food Chemistry, 119, 380-385.
http://dx.doi.org/10.1016/j.foodchem.2009.05.087
|
[3]
|
De la Escosura-Muniz, A. and Merkoçi, A. (2010) Electrochemical Detection of Proteins Using Nanoparticles: Applications to Diagnostics. Expert Opinion on Medical Diagnostics, 4, 21-37.
http://dx.doi.org/10.1517/17530050903386661
|
[4]
|
Aboul-Enein, H.Y. and Ali, I. (2011) Nano Chromatography and Capillary Electrophoresis: Pharmaceutical and Environmental Analyses. Wiley-VCH, Weinheim.
|
[5]
|
Feng, R., Zhang, Y., Li, H., Wu, D., Xin, X.D., Zhang, S., Yu, H.Q., Wei, Q. and Du, B. (2013) Ultrasensitive Electrochemical Immunosensor for Zeranol Detection Based on Signal Amplification Strategy of Nanoporous Gold Films and Nano-Montmorillonite as Labels. Analytica Chimica Acta, 758, 72-79. http://dx.doi.org/10.1016/j.aca.2012.11.009
|
[6]
|
Xu, H.-B., Ye, R.-F., Yang, S.-Y., Li, R. and Yang, X. (2014) Electrochemical DNA Nano-Biosensor for the Detection of Genotoxins in Water Samples. Chinese Chemical Letters, 25, 29-34. http://dx.doi.org/10.1016/j.cclet.2013.10.011
|
[7]
|
Ma, Y., Jiao, K., Yang, T. and Sun, D.X. (2008) Sensitive PAT Gene Sequence Detection by Nano-SiO2/p-Aminothiophenol Self-Assembled Films DNA Electrochemical Biosensor Based on Impedance Measurement. Sensors and Actuators B: Chemical, 131, 565-571. http://dx.doi.org/10.1016/j.snb.2007.12.046
|
[8]
|
Kim, H.-S. and Yoon, H.C. (2007) Dendrimer-Based Electrochemical Detection Methods.
|
[9]
|
Ramanaviciene, A., Ramanavicius, A. and Finkelsteinas, A. (2006) Basic Electrochemistry Meets Nanotechnology: Electrochemical Preparation of Artificial Receptors Based on a Nanostructured Conducting Polymer, Polypyrrole. Journal of Chemical Education, 83, 1212. http://dx.doi.org/10.1021/ed083p1212
|
[10]
|
Li, D., Liu, J.Q., Barrow, C.J. and Yang, W.R. (2014) Protein Electrochemistry Using Graphene-Based Nano-Assembly: An Ultrasensitive Electrochemical Detection of Protein Molecules via Nanoparticle-Electrode Collisions. Chemical Communications, 50, 8197-8200. http://dx.doi.org/10.1039/c4cc03384a
|
[11]
|
Wang, L., Han, B.X., Dai, L., Li, Y.H., Zhou, H.Z. and Wang, H. (2013) A La10Si5NbO27.5 Based Electrochemical Sensor Using Nano-Structured NiO Sensing Electrode for Detection of NO2. Materials Letters, 109, 16-19.
http://dx.doi.org/10.1016/j.matlet.2013.07.032
|
[12]
|
Walcarius, A., Minteer, S.D., Wang, J., Lin, Y.H. and Merkoçi, A. (2013) Nanomaterials for Bio-Functionalized Electrodes: Recent Trends. Journal of Materials Chemistry B, 1, 4878-4908. http://dx.doi.org/10.1039/c3tb20881h
|
[13]
|
Baby, T.T., Jyothirmayee Aravind, S.S., Arockiadoss, T., Rakhi, R.B. and Ramaprabhu, S. (2010) Metal Decorated Graphene Nanosheets as Immobilization Matrix for Amperometric Glucose Biosensor. Sensors and Actuators B: Chemical, 145, 71-77.
|
[14]
|
Chen, Q.W., Zhang, L.Y. and Chen, G. (2012) Facile Preparation of Graphene-Copper Nanoparticle Composite by in Situ Chemical Reduction for Electrochemical Sensing of Carbohydrates. Analytical Chemistry, 84, 171-178.
http://dx.doi.org/10.1021/ac2022772
|
[15]
|
Yang, T., Hu, Y.W., Li, W.J. and Jiao, K. (2011) Single Stranded DNA-Guided Electropolymerization of Polythionine Nanostrip to the Sensing of H2O2. Colloids and Surfaces B: Biointerfaces, 83, 179-182.
|
[16]
|
Jiang, L., Gu, S.Q., Ding, Y.P., Ye, D.X., Zhang, Z. and Zhang, F.F. (2013) Amperometric Sensor Based on Tricobalt Tetroxide Nanoparticles-Graphene Nanocomposite Film Modified Glassy Carbon Electrode for Determination of Tyrosine. Colloids and Surfaces B: Biointerfaces, 107, 146-151. http://dx.doi.org/10.1016/j.colsurfb.2013.01.077
|
[17]
|
Wang, Y., Li, Z.H., Wang, J., Li, J.H. and Lin, Y.H. (2011) Graphene and Graphene Oxide: Biofunctionalization and Applications in Biotechnology. Trends in Biotechnology, 29, 205-212.
|
[18]
|
Wang, Y., Zhang, S., Du, D., Shao, Y.Y., Li, Z.H., Wang, J., Engelhard, M.H., Li, J.H. and Lin, Y.H. (2011) Self-Assembly of Acetylcholinesterase on a Gold Nanoparticles-Graphene Nanosheet Hybrid for Organophosphate Pesticide Detection Using Polyelectrolyte as a Linker. Journal of Materials Chemistry, 21, 5319-5325.
http://dx.doi.org/10.1039/c0jm03441j
|
[19]
|
Sizov, I., Rahman, M., Gelmont, B., Norton, M.L. and Globus, T. (2013) Sub-THz Spectroscopic Characterization of Vibrational Modes in Artificially Designed DNA Monocrystal. Chemical Physics, 425, 121-125.
http://dx.doi.org/10.1016/j.chemphys.2013.08.015
|
[20]
|
Roy, S., Covert, P.A., FitzGerald, W.R. and Hore, D.K. (2014) Biomolecular Structure at Solid-Liquid Interfaces As Revealed by Nonlinear Optical Spectroscopy. Chemical Reviews, 114, 8388-8415. http://dx.doi.org/10.1021/cr400418b
|
[21]
|
Vithanage, M., Rajapaksha, A.U., Dou, X.M., Bolan, N.S., Yang, J.E. and Ok, Y.S. (2013) Surface Complexation Modeling and Spectroscopic Evidence of Antimony Adsorption on Iron-Oxide-Rich Red Earth Soils. Journal of Colloid and Interface Science, 406, 217-224.
|
[22]
|
Lin, Z.-H., Chen, I.-C. and Chang, H.-T. (2011) Detection of Human Serum Albumin through Surface-Enhanced Raman Scattering Using Gold “Pearl Necklace” Nanomaterials as Substrates. Chemical Communications, 47, 7116-7118.
http://dx.doi.org/10.1039/c1cc11818h
|
[23]
|
Ho, J.-A.A., Lin, Y.-C., Wang, L.-S., Hwang, K.-C. and Chou, P.-T. (2009) Carbon Nanoparticle-Enhanced Immunoelectrochemical Detection for Protein Tumor Marker with Cadmium Sulfide Biotracers. Analytical Chemistry, 81, 1340-1346. http://dx.doi.org/10.1021/ac801832h
|
[24]
|
Upadhyayula, V.K.K. (2012) Functionalized Gold Nanoparticle Supported Sensory Mechanisms Applied in Detection of Chemical and Biological Threat Agents: A Review. Analytica Chimica Acta, 715, 1-18.
http://dx.doi.org/10.1016/j.aca.2011.12.008
|
[25]
|
Ray, P.C., Khan, S.A., Singh, A.K., Senapati, D. and Fan, Z. (2012) Nanomaterials for Targeted Detection and Photothermal Killing of Bacteria. Chemical Society Reviews, 41, 3193-3209. http://dx.doi.org/10.1039/c2cs15340h
|
[26]
|
Ibanez-Peral, R., Bergquist, P.L., Walter, M.R., Gibbs, M., Goldys, E.M. and Ferrari, B. (2008) Potential Use of Quantum Dots in Flow Cytometry. International Journal of Molecular Sciences, 9, 2622-2638.
http://dx.doi.org/10.3390/ijms9122622
|
[27]
|
Kaittanis, C., Santra, S. and Perez, J.M. (2009) Emerging Nanotechnology-Based Strategies for the Identification of Microbial Pathogenesis. Advanced Drug Delivery Reviews, 62, 408-423. http://dx.doi.org/10.1016/j.addr.2009.11.013
|
[28]
|
Dahane, S., Gil García, M.D., Martínez Bueno, M.J., Uclés Moreno, A., MartínezGalera, M. and Derdour, A. (2013) Determination of Drugs in River and Wastewaters Using Solid-Phase Extraction by Packed Multi-Walled Carbon Nanotubes and Liquid Chromatography-Quadrupole-Linear Ion Trap-Mass Spectrometry. Journal of Chromatography A, 1297, 17-28. http://dx.doi.org/10.1016/j.chroma.2013.05.002
|
[29]
|
Sekhon, B.S. (2011) An Overview of Capillary Electrophoresis: Pharmaceutical, Biopharmaceutical and Biotechnology Applications. Journal of Pharmaceutical Education and Research, 2, 2-36.
|
[30]
|
Ramezani, F. (2012) Protein Bands Detection by Nanoparticles after Paper Chromatography. International Journal of Nanoscience and Nanotechnology, 8, 181-184.
|
[31]
|
Sharma, S., Plistil, A., Simpson, R.S., Liu, K., Farnsworth, P.B., Stearns, S.D. and Lee, M.L. (2014) Instrumentation for Hand-Portable Liquid Chromatography. Journal of Chromatography A, 1327, 80-89.
http://dx.doi.org/10.1016/j.chroma.2013.12.059
|
[32]
|
Hirabayashi, A., Ishimaru, M., Manri, N., Yokosuka, T. and Hanzawa, H. (2007) Detection of Potential Ion Suppression for Peptide Analysis in Nanoflow Liquid Chromatography/Mass Spectrometry. Rapid Communications in Mass Spectrometry, 17, 2860-2866. http://dx.doi.org/10.1002/rcm.3157
|
[33]
|
Guetens, G., Van Cauwenberghe, K., De Boeck, G., Maes, R., Tjaden, U.R., van der Greef, J., Highley, M., van Oosterom, A.T. and de Bruijn, E.A. (2000) Nanotechnology in Bio/Clinical Analysis. Journal of Chromatography B: Biomedical Sciences and Applications, 739, 139-150.
|
[34]
|
Gesquiere, A.J. (2010) Optical Properties and Spectroscopy of Nanomaterials. Journal of the American Chemical Society, 132, 3637-3638.
|
[35]
|
Heurich, M., Abdul Kadir, M.K. and Tothill, I.E. (2011) An Electrochemical Sensor Based on Carboxymethylated Dextran Modified Gold Surface for Ochratoxin A Analysis. Sensors and Actuators B: Chemical, 156, 162-168.
http://dx.doi.org/10.1016/j.snb.2011.04.007
|
[36]
|
Wei, Z., Sun, Z., Fang, Y., Ren, G., Huang, Y. and Liu, J. (2011) Highly Sensitive Deoxynivalenol Immunosensor Based on a Glassy Carbon Electrode Modified with a Fullerene/Ferrocene/Ionic Liquid Composite. Microchimica Acta, 172, 365-371.
|
[37]
|
Wang, J. (2005) Nanomaterial-Based Electrochemical Biosensors. Analyst, 130, 421-426.
http://dx.doi.org/10.1039/b414248a
|