The Effect of Tick Size on Testing for Nonlinearity in Financial Markets Data

Abstract

The discrete nature of financial markets time-series data may prejudice the BDS and Close Returns test for nonlinearity. Our estimation results suggest that a tick/volatility ratio threshold exists, beyond which the test results are biased. Further, tick/volatility ratios that exceed these thresholds are frequently observed in financial markets data, which suggests that the results of the BDS and CR test must be interpreted with caution.

Share and Cite:

H. Mitchell and M. McKenzie, "The Effect of Tick Size on Testing for Nonlinearity in Financial Markets Data," Journal of Mathematical Finance, Vol. 1 No. 1, 2011, pp. 1-7. doi: 10.4236/jmf.2011.11001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] V. R. Anshuman and A. Kalay, “Market Making with Discrete Prices,” The Review of Financial Studies, Vol. 11, No. 1, 1998, pp. 81-109. doi:10.1093/rfs/11.1.81
[2] C. Vorlow, “Stock Price Clustering and Discreteness: The ‘Compass Rose’ and Complex Dynamics,” Working Paper, University of Durham, Durham, 2004.
[3] A. Antoniou and C. E. Vorlow, “Price Clustering and Discreteness: Is There Chaos behind the Noise,” Physica A, Vol. 348, 2005, pp. 389-403. doi:10.1016/j.physa.2004.09.006
[4] C. Lee, K. Gleason and I. Mathur, “The Tick/Volatility Ratio as a Determinant of the Compass Rose Pattern,” European Journal of Finance, Taylor and Francis Journals, Vol. 11, No. 2, April 2005, pp. 93-109.
[5] H. Amilon, “GARCH Estimation and Discrete Stock Pri- ces: An Application to Low-Priced Australian Stocks,” Economics Letters, Vol. 81, No. 2, 2003, pp. 215-222. doi:10.1016/S0165-1765(03)00172-1
[6] G. Gottleib and A. Kalay, “Implications of the Discreteness of Observed Stock Prices,” Journal of Finance, Vol. 40, No. 1, 1985, pp. 135-154. doi:10.2307/2328052
[7] R. Koppl and S. Tuluca, “Random Walk Hypothesis Test- ing and the Compass Rose,” Finance Letters, Vol. 2, No. 1, 2002, pp. 14-17.
[8] Y. Fang, “The Compass Rose and Random Walk Tests,” Computational Sta-tistics and Data Analysis, Vol. 39, No. 3, 2002, pp. 299-310. doi:10.1016/S0167-9473(01)00063-9
[9] T. F. Crack and O. Ledoit, “Robust Structure without Predictability: The Compass Rose Pattern of the Stock Market,” Journal of Finance, Vol. 51, No. 2, 1996, pp. 751-762. doi:10.2307/2329379
[10] W. Kramer and R. Runde, “Chaos and the Compass Rose,” Eco-nomics Letters, Vol. 54, No. 2, 1997, pp. 113-118. doi:10.1016/S0165-1765(97)00020-7
[11] W. Brock, W. De-chert and J. Scheinkman, “A Test for Independence Based on the Correlation Dimension,” Working Paper, University of Wisconsin, Madison, 1987.
[12] W. D. Dechert, “Testing Time Series for Nonlinearities: The BDS Approach,” In: W. A. Kirman,et al., Eds. Non- linear Dynamics and Economics: Proceedings of the 10th International Symposium in Economic Theory and Eco- nometrics, Cambridge University Press, Cambridge, 1996
[13] P. Grassberger and I. Procacia, “Meas-uring the Strangeness of Strange Attractors,” Physica D: Nonlinear Phenomena, Vol. 9, No. 1-2, 1983, pp. 189-208.
[14] Y.-T. Chen and C.-M. Kuan, “Time Irreversibil-ity and EGARCH Effects in US Stock Index Returns,” Journal of Applied Econometrics, Vol. 17, No. 5, 2002, pp. 565-578. doi:10.1002/jae.692
[15] R. Ostermark, J. Aaltonen, H. Saxen and K. Soderlund, “Nonlinear Modelling of the Finnihs Banking and Finance Branch Index,” European Journal of Finance, Vol. 10, No. 4, 2004, pp. 277-289. doi:10.1080/13518470210124641
[16] R. T. Baillie, A. A. Cecen and Y.-W. Han, “High Frequency Deutschemark-US Dollar Returns: FIGARCH Representation and Non Linearities,” Multinational Finance Journal, Vol. 4, No. 3-4, 2000, pp. 247-268.
[17] C. G. Gilmore, “An Examination of Nonlinear Dependence in Exchange Rates Using Recent Methods from Chaos Theory,” Global Finance Journal, Vol. 12, No. 1, 2001, pp. 139-151. doi:10.1016/S1044-0283(01)00018-7
[18] V. Chwee, “Chaos in Natural Gas Futures?” The Energy Journal, Vol. 19, No. 2, 1998, pp. 149-164. doi:10.5547/ISSN0195-6574-EJ-Vol19-No2-10
[19] M. Frank and T. Stengos, “Chaotic Dynamics in Economic Time Series,” Journal of Economic Surveys, Vol. 2, No. 2, 1988, pp. 103-133. doi:10.1111/j.1467-6419.1988.tb00039.x
[20] N. Kohzadi and M. S. Boyd, “Testing for Chaos and Nonlinear Dynamics in Cattle Prices,” Canadian Journal of Agricultural Economics, Vol. 43, No. 3, 1995, pp. 475- 484. doi:10.1111/j.1744-7976.1995.tb00136.x
[21] P. M. Bodman, “Steepness and Deepness in the Australian Macroeconomy,” Applied Economics, Vol. 33, No. 3, 2001, pp. 375-382. doi:10.1080/00036840122115
[22] C. G. Gilmore, “An Ex-amination of Nonlinear Dependence in Exchange Rates Using Recent Methods from Chaos Theory,” Global Finance Journal, Vol. 12, No. 1, 2001, pp. 139-151. doi:10.1016/S1044-0283(01)00018-7
[23] C. G. Gilmore, “A New Test for Chaos,” Journal of Eco- nomic Behaviour and Organisation, Vol. 22, No. 2, 1993, pp. 209-237. doi:10.1016/0167-2681(93)90064-V
[24] C. G. Gilmore, “A New Approach to Testing for Chaos, with Applications in Fi-nance and Economics,” International Journal of Bifurcation and Chaos, Vol. 3, No. 3, 1993, pp. 583-587. doi:10.1142/S0218127493000477
[25] C. G. Gilmore, “De-tecting Linear and Nonlinear Dependence in Stock Returns: New Methods Derived from Chaos Theory,” Journal of Business and Finance Accounting, Vol. 23, No. 9-10, 1996, pp. 1357-1377. doi:10.1111/1468-5957.00084
[26] M. D. McKenzie, “Chaotic Behaviour in National Stock Market Indices: New Evidence from the Close Returns Test,” Global Finance Journal, Vol. 12, No. 1, 2001, pp. 35-53. doi:10.1016/S1044-0283(01)00024-2
[27] D. E. Knuth, “The Art of Computer Programming,” 3rd Edition, Addison-Wesley Publishing Company, London. 1997.
[28] W. A. Brock, D. A. Hsieh and B. LeBaron, “Nonlinear Dynamics, Chaos and In-stability: Statistical Theory and Economic Evidence,” MIT Press, London, 1991.
[29] P. L’Ecuyer, “Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators,” Operations Research, Vol. 47, No. 1, 1999, pp. 159-164. doi:10.1287/opre.47.1.159
[30] M. Ma-tsumoto and T. Nishimura, “Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Ran- dom Number Generator,” ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, 1998, pp. 3- 30. doi:10.1145/272991.272995
[31] C. I. Lee, K. C. Gleason and I. Mathur, “A Comprehensive Examination of the Compass Rose Pattern in Futures Markets,” Journal of Futures Markets, Vol. 19, No. 5, 1999, pp. 541-564. doi:10.1002/(SICI)1096-9934(199908)19:5<541::AID-FUT3>3.0.CO;2-7
[32] E. Wang, R. Hudson and K. Keasey, “Tick Size and the Compass Rose: Further Insights,” Economics Letters, Vol. 68, No. 2, 2000, pp. 119-125. doi:10.1016/S0165-1765(00)00237-8
[33] D. Ruelle, “Deter-ministic Chaos: The Science and the Fiction,” Proceedings of the Royal Society of London, Vol. 427, No. 1873, 1991, pp. 241-248.
[34] J. B. Ramsay and H. J. Yuan, “Bias and Error Bars in Dimension Calculations and Their Evaluation in Some Simple Models,” Physics Letters A, Vol. 134, No. 5, 1989, pp. 287-297. doi:10.1016/0375-9601(89)90638-5
[35] J. B. Ram-say and H. J. Yuan, “The Statistical Properties of Dimension Calculations Using Small Data Sets,” Non- linearity, Vol. 3, No. 1, 1990, pp. 155-175. doi:10.1088/0951-7715/3/1/009
[36] K. C. Gleason, C. I. Lee and I. Mathur, “An Explanation for the Compass Rose Pattern,” Economics Letters, Vol. 68, No. 2, 2000, pp. 127-133. doi:10.1016/S0165-1765(00)00252-4
[37] M. D. McKenzie and A. Frino, “The Tick/Volatility Ratio as a Determinant of the Compass Rose: Empirical evidence from decimalisation on the NYSE,” Accounting and Finance, Vol. 43, No. 3, 2003, pp. 331-344. doi:10.1111/j.1467-629x.2003.00094.x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.