[1]
|
Bissonnette, J.M. (2000) Mechanisms regulating hypoxic respiratory depression during fetal and postnatal life. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 278, R 1391-1400.
|
[2]
|
Carroll, J.L. (2003) Developmental plasticity in respiratory control. Journal of Applied Physiology, 94, 375-389.
|
[3]
|
Cohen, G. and Katz-Salamon, M. (2005) Development of chemoreceptor responses in infants. Respiratory Physiology & Neurobiology, 149, 233-242.
doi:10.1016/j.resp.2005.02.013
|
[4]
|
Eden, G.J. and Hanson, M.A. (1987) Maturation of the respiratory response to acute hypoxia in the newborn rat. Journal of Physiology, 392, 1-9.
|
[5]
|
Liu, Q., Lowry, T.F. and Wong-Riley, M.T. (2006) Postnatal changes in ventilation during normoxia and acute hypoxia in the rat: implication for a sensitive period. Journal of Physiology, 577, 957-970.
doi:10.1113/jphysiol.2006.121970
|
[6]
|
Romijn, H.J., Hofman, M.A. and Gramsbergen, A. (1991) At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? Early Human Development, 26, 61-67.
doi:10.1016/0378-3782(91)90044-4
|
[7]
|
Behan, M. and Wenninger, J.M. (2008) Sex steroidal hormones and respiratory control. Respiratory Physiology & Neurobiology, 164, 213-221.
doi:10.1016/j.resp.2008.06.006
|
[8]
|
Julien, C., Bairam, A. and Joseph, V. (2008) Chronic intermittent hypoxia reduces ventilatory long-term facilitation and enhances apnea frequency in newborn rats. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 294, R1356-1366.
doi:10.1152/ajpregu.00884.2007
|
[9]
|
Niane, L.M., Donnelly, D.F., Joseph, V. and Bairam, A. (2010) Ventilatory and carotid body chemoreceptor responses to purinergic P2X receptor antagonists in newborn rats. Journal of Applied Physiology, 110, 83-94.
doi:10.1152/japplphysiol.00871.2010
|
[10]
|
Julien, C.A., Niane, L., Kinkead, R., Bairam, A. and Joseph, V. (2010) Carotid sinus nerve stimulation, but not intermittent hypoxia, induces respiratory LTF in adult rats exposed to neonatal intermittent hypoxia. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 299, R192-205.
doi:10.1152/ajpregu.00707.2009
|
[11]
|
Bartlett, D.Jr. and Tenney, S.M. (1970) Control of breathing in experimental anemia. Respiratory Physiology, 10, 384-395. doi:10.1016/0034-5687(70)90056-3
|
[12]
|
Montandon, G., Bairam, A. and Kinkead, R. (2006) Long-term consequences of neonatal caffeine on ventilation, occurrence of apneas, and hypercapnic chemoreflex in male and female rats. Pediatric Research, 59, 519-524.
doi:10.1203/01.pdr.0000203105.63246.8a
|
[13]
|
Mendelson, W.B., Martin, J.V., Perlis, M., Giesen, H., Wagner, R. and Rapoport, S.I. (1988) Periodic cessation of respiratory effort during sleep in adult rats. Physiology & Behavior, 43, 229-234.
doi:10.1016/0031-9384(88)90243-0
|
[14]
|
Julien, C.A., Joseph, V. and Bairam, A. (2010) Caffeine reduces apnea frequency and enhances ventilatory long-term facilitation in rat pups raised in chronic intermittent hypoxia. Pediatric Research, 68, 105-111.
doi:10.1203/PDR.0b013e3181e5bc78
|
[15]
|
Parmeggiani, P.L. (1985) Regulation of circulation and breathing during sleep: experimental aspects. Annals of Clinical Research, 17, 185-189.
|
[16]
|
Putnam, R.W., Conrad, S.C., Gdovin, M.J., Erlichman, J.S. and Leiter, J.C. (2005) Neonatal maturation of the hypercapnic ventilatory response and central neural CO2 chemosensitivity. Respiratory Physiology & Neurobiology, 149, 165-179. doi:10.1016/j.resp.2005.03.004
|
[17]
|
Darnall, R.A., Ariagno, R.L. and Kinney, H.C. (2006) The late preterm infant and the control of breathing, sleep, and brainstem development: a review. Clinics in Perinatology, 33, 883-914. doi:10.1016/j.clp.2006.10.004
|
[18]
|
Gulemetova, R. and Kinkead, R. (2011) Neonatal stress increases respiratory instability in rat pups. Respiratory Physiology & Neurobiology, in press.
doi:10.1016/j.resp.2011.01.014
|
[19]
|
Mateika, J.H. and Narwani, G. (2009) Intermittent hypoxia and respiratory plasticity in humans and other animals: does exposure to intermittent hypoxia promote or mitigate sleep apnoea? Experimental Physiology, 94, 279-296. doi:10.1113/expphysiol.2008.045153
|
[20]
|
Bavis, R.W. and Mitchell, G.S. (2008) Long-term effects of the perinatal environment on respiratory control. Journal of Applied Physiology, 104, 1220-1229.
doi:10.1152/japplphysiol.01086.2007
|
[21]
|
Montandon, G., Bairam, A. and Kinkead, R. (2008) Neonatal caffeine induces sex-specific developmental plasticity of the hypoxic respiratory chemoreflex in adult rats, American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 295, R922-934.
doi:10.1152/ajpregu.00059.2008
|
[22]
|
Enhorning, G., Schaik, van S., Lundgren, C. and Vargas, I. (1998) Whole-body plethysmography, does it measure tidal volume of small animals? Canadian Journal of Physiology and Pharmacology, 76, 945-951.
doi:10.1139/y99-002
|
[23]
|
Mortola, J.P. and Frappell, P.B. (1998) On the barometric method for measurements of ventilation, and its use in small animals. Canadian Journal of Physiology and Pharmacology, 76, 937-944. doi:10.1139/y99-001
|
[24]
|
Blumberg, M.S., Seelke, A.M., Lowen, S.B. and Karlsson, K.A. (2005) Dynamics of sleep-wake cyclicity in developing rats. Proceedings of the National Academy of Sciences, USA, 102, 14860-14864.
doi:10.1073/pnas.0506340102
|
[25]
|
Frank, M.G. and Heller, H.C. (1997) Development of REM and slow wave sleep in the rat. American Journal of Physiology, 272, R1792-1799.
|