[1]
|
Laughlin, R. and Pines, D. (2000) The Theory of Everything. Proceedings of the National Academy of Sciences of the United States of America, 97, 28-31. http://dx.doi.org/10.1073/pnas.97.1.28
|
[2]
|
Baker, S.G. and Kramer, B.S. (2011) Systems Biology and Cancer: Promises and Perils. Progress in Biophysics & Molecular Biology, 106, 410-413. http://dx.doi.org/10.1016/j.pbiomolbio.2011.03.002
|
[3]
|
Laughlin, R., Pines, D., Schmalian, J., Stojkovic, B. and Wolynes, P. (2000) The Middle Way. Proceedings of the National Academy of Sciences of the United States of America, 97, 32-37. http://dx.doi.org/10.1073/pnas.97.1.32
|
[4]
|
Noble, D. (2002) Modeling the Heart—From Genes to Cells to the Whole Organ. Science, 295, 1678-1682.
http://dx.doi.org/10.1126/science.1069881
|
[5]
|
Qu, Z., Garfinkel, A., Weiss, J.N. and Nivala, M. (2011) Multi-Scale Modeling in Biology: How to Bridge the Gaps between Scales? Progress in Biophysics and Molecular Biology, 107, 21-31.
http://dx.doi.org/10.1016/j.pbiomolbio.2011.06.004
|
[6]
|
Nicolis, G. and Prigogine, I. (1977) Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations. Wiley, New York.
|
[7]
|
Prigogine, I. (1968) Introduction to Thermodynamics of Irreversible Processes. Interscience Publishers, New York.
|
[8]
|
Haken, H. (1983) Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices. Springer-Verlag, Berlin, New York.
|
[9]
|
Haken, H. (1983) Synergetics: An Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology. Springer, Berlin.
|
[10]
|
Haken, H. (1996) Slaving Principle Revisited. Physica D: Nonlinear Phenomena, 97, 95-103.
http://dx.doi.org/10.1016/0167-2789(96)00080-2
|
[11]
|
Benettin, G., Galgani, L. and Strelcyn, J.-M. (1976) Kolmogorov Entropy and Numerical Experiments. Physical Review A, 14, 2338-2345. http://dx.doi.org/10.1103/PhysRevA.14.2338
|
[12]
|
Argoul, F. and Arneodo, A. (1986) Lyapunov Exponents and Phase Transitions in Dynamical Systems. In: Arnold, L. and Wihstutz, V., Eds., Lyapunov Exponents, Springer, Berlin, Heidelberg, 338-360.
|
[13]
|
Colonna, M. and Bonasera, A. (1999) Lyapunov Exponents in Unstable Systems. Physical Review E, Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics, 60, 444-448.
|
[14]
|
Luque, B. and Solé, R.V. (2000) Lyapunov Exponents in Random Boolean Networks. Physica A: Statistical Mechanics and Its Applications, 284, 33-45. http://dx.doi.org/10.1016/S0378-4371(00)00184-9
|
[15]
|
Prasad, A., Mehra, V. and Ramaswamy, R. (1997) Intermittency Route to Strange Nonchaotic Attractors. Physical Review Letters, 79, 4127-4130. http://dx.doi.org/10.1103/PhysRevLett.79.4127
|
[16]
|
Schrodinger, E. (1944) What Is Life? Cambridge University Press, Cambridge.
|
[17]
|
Frohlich, H. (1968) Long-Range Coherence and Energy Storage in Biological Systems. International Journal of Quantum Chemistry, 2, 641-649.
|
[18]
|
Frohlich, H. (1978) Coherent Electric Vibrations in Biological Systems and the Cancer Problem. IEEE Transactions on Microwave Theory and Techniques, 26, 613-618. http://dx.doi.org/10.1109/TMTT.1978.1129446
|
[19]
|
Davydov, A.S. (1977) Solitons and Energy-Transfer along Protein Molecules. Journal of Theoretical Biology, 66, 377- 387.
|
[20]
|
Cruzeiro-Hansson, L. and Takeno, S. (1997) Davydov Model: The Quantum, Mixed Quantum-Classical and Full Classical Systems. Physical Review E, 56, 894-906. http://dx.doi.org/10.1103/PhysRevE.56.894
|
[21]
|
Daniel, M. and Deepamala, K. (1995) Davydov Soliton in Alpha-Helical Proteins: Higher-Order and Discreteness Effects. Physica A, 221, 241-255. http://dx.doi.org/10.1016/0378-4371(95)00243-Z
|
[22]
|
Hochstrasser, D., Mertens, F. and Buttner, H. (1989) Energy-Transport by Lattice Solitons in Alpha-Helical Proteins. Physical Review A, 40, 2602-2610. http://dx.doi.org/10.1103/PhysRevA.40.2602
|
[23]
|
Scott, A. (1992) Davydovs Soliton. Physics Reports, 217, 1-67. http://dx.doi.org/10.1016/0370-1573(92)90093-F
|
[24]
|
Edler, J., Pfister, R., Pouthier, V., Falvo, C. and Hamm, P. (2004) Direct Observation of Self-Trapped Vibrational States in Alpha-Helices. Physical Review Letters, 93, Article ID: 106405.
http://dx.doi.org/10.1103/PhysRevLett.93.106405
|
[25]
|
Turing, A. (1952) The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 237, 37-72. http://dx.doi.org/10.1098/rstb.1952.0012
|
[26]
|
Kauffman, S.A. (1993) The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York.
|
[27]
|
Aragón, J.L., Barrio, R.A., Woolley, T.E., Baker, R.E. and Maini, P.K. (2012) Nonlinear Effects on Turing Patterns: Time Oscillations and Chaos. Physical Review E, 86, Article ID: 026201.
http://dx.doi.org/10.1103/PhysRevE.86.026201
|
[28]
|
Volpert, V. and Petrovskii, S. (2009) Reaction-Diffusion Waves in Biology. Physics of Life Reviews, 6, 267-310.
http://dx.doi.org/10.1016/j.plrev.2009.10.002
|
[29]
|
Eigen, M. (1971) Self-Organization of Matter and the Evolution of Biological Macromolecules. Naturwissenschaften, 58, 465-523.
|
[30]
|
Gatenby, R.A. and Frieden, B.R. (2013) The Critical Roles of Information and Nonequilibrium Thermodynamics in Evolution of Living Systems. Bulletin of Mathematical Biology, 75, 589-601.
http://dx.doi.org/10.1007/s11538-013-9821-x
|
[31]
|
Glass, L. (2001) Synchronization and Rhythmic Processes in Physiology. Nature, 410, 277-284.
http://dx.doi.org/10.1038/35065745
|
[32]
|
Camazine, S., Ed. (2001) Self-Organization in Biological Systems. Princeton University Press, Princeton.
|
[33]
|
Friston, K. (2012) A Free Energy Principle for Biological Systems. Entropy, 14, 2100-2121.
http://dx.doi.org/10.3390/e14112100
|
[34]
|
Karsenti, E. (2008) Self-Organization in Cell Biology: A Brief History. Nature Reviews Molecular Cell Biology, 9, 255-262. http://dx.doi.org/10.1038/nrm2357
|
[35]
|
Kurakin, A. (2009) Scale-Free Flow of Life: On the Biology, Economics and Physics of the Cell. Theoretical Biology and Medical Modelling, 6, 6. http://dx.doi.org/10.1186/1742-4682-6-6
|
[36]
|
Misteli, T. (2001) The Concept of Self-Organization in Cellular Architecture. The Journal of Cell Biology, 155, 181-186. http://dx.doi.org/10.1083/jcb.200108110
|
[37]
|
Rabinovich, M., Varona, P., Selverston, A. and Abarbanel, H. (2006) Dynamical Principles in Neuroscience. Reviews of Modern Physics, 78, 1213-1265. http://dx.doi.org/10.1103/RevModPhys.78.1213
|
[38]
|
Sasai, Y. (2013) Cytosystems Dynamics in Self-Organization of Tissue Architecture. Nature, 493, 318-326.
http://dx.doi.org/10.1038/nature11859
|
[39]
|
Smith, N., Mulquiney, P., Nash, M., Bradley, C., Nickerson, D. and Hunter, P. (2002) Mathematical Modeling of the Heart: Cell to Organ. Chaos Solitons & Fractals, 13, 1613-1621. http://dx.doi.org/10.1016/S0960-0779(01)00170-9
|
[40]
|
Bizzarri, M., Palombo, A. and Cucina, A. (2013) Theoretical Aspects of Systems Biology. Progress in Biophysics and Molecular Biology, 112, 33-43. http://dx.doi.org/10.1016/j.pbiomolbio.2013.03.019
|
[41]
|
Coffey, D. (1998) Self-Organization, Complexity and Chaos: The New Biology for Medicine. Nature Medicine, 4, 882-885. http://dx.doi.org/10.1038/nm0898-882
|
[42]
|
Saetzler, K., Sonnenschein, C. and Soto, A.M. (2011) Systems Biology beyond Networks: Generating Order from Disorder through Self-Organization. Seminars in Cancer Biology, 21, 165-174.
http://dx.doi.org/10.1016/j.semcancer.2011.04.004
|
[43]
|
Levinthal, C. (1968) Are There Pathways for Protein Folding? Journal de Chimie Physique et de Physico-Chimie Biologique, 65, 44-45.
|
[44]
|
Fromherz, P. (1988) Self-Organization of the Fluid Mosaic of Charged Channel Proteins in Membranes. Proceedings of the National Academy of Sciences of the United States of America, 85, 6353-6357.
http://dx.doi.org/10.1073/pnas.85.17.6353
|
[45]
|
Binhi, V.N. and Rubin, A.B. (2007) Magnetobiology: The kT Paradox and Possible Solutions. Electromagnetic Biology and Medicine, 26, 45-62. http://dx.doi.org/10.1080/15368370701205677
|
[46]
|
Bryngelson, J., Onuchic, J., Socci, N. and Wolynes, P. (1995) Funnels, Pathways and the Energy Landscape of Protein-Folding: A Synthesis. Proteins-Structure Function and Genetics, 21, 167-195.
http://dx.doi.org/10.1002/prot.340210302
|
[47]
|
Fersht, A. (1997) Nucleation Mechanisms in Protein Folding. Current Opinion in Structural Biology, 7, 3-9.
http://dx.doi.org/10.1016/S0959-440X(97)80002-4
|
[48]
|
Leopold, P., Montal, M. and Onuchic, J. (1992) Protein Folding Funnels: A Kinetic Approach to the Sequence Structure Relationship. Proceedings of the National Academy of Sciences of the United States of America, 89, 8721-8725.
http://dx.doi.org/10.1073/pnas.89.18.8721
|
[49]
|
Dill, K.A. and MacCallum, J.L. (2012) The Protein-Folding Problem, 50 Years On. Science, 338, 1042-1046.
http://dx.doi.org/10.1126/science.1219021
|
[50]
|
Wolynes, P.G. (2005) Energy Landscapes and Solved Protein—Folding Problems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363, 453-467.
http://dx.doi.org/10.1098/rsta.2004.1502
|
[51]
|
Lundgren, M., Krokhotin, A. and Niemi, A.J. (2013) Topology and Structural Self-Organization in Folded Proteins. Physical Review E, 88, Article ID: 042709. http://dx.doi.org/ 10.1103/PhysRevE.88.042709
|
[52]
|
Vendruscolo, M., Zurdo, J., MacPhee, C.E. and Dobson, C.M. (2003) Protein Folding and Misfolding: A Paradigm of Self-Assembly and Regulation in Complex Biological Systems. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 361, 1205-1222.
http://dx.doi.org/10.1098/rsta.2003.1194
|
[53]
|
Gerstman, B. and Chapagain, P. (2005) Self-Organization in Protein Folding and the Hydrophobic Interaction. Journal of Chemical Physics, 123, Article ID: 054901. http://dx.doi.org/10.1063/1.1990110
|
[54]
|
Malinovska, L., Kroschwald, S. and Alberti, S. (2013) Protein Disorder, Prion Propensities and Self-Organizing Macromolecular Collectives. Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics, 1834, 918-931.
http://dx.doi.org/10.1016/j.bbapap.2013.01.003
|
[55]
|
Nelson, E. and Onuchic, J. (1998) Proposed Mechanism for Stability of Proteins to Evolutionary Mutations. Proceedings of the National Academy of Sciences of the United States of America, 95, 10682-10686.
http://dx.doi.org/10.1073/pnas.95.18.10682
|
[56]
|
Batey, S., Randles, L., Steward, A. and Clarke, J. (2005) Cooperative Folding in a Multi-Domain Protein. Journal of Molecular Biology, 349, 1045-1059. http://dx.doi.org/10.1016/j.jmb.2005.04.028
|
[57]
|
Finkelstein, A.V. and Galzitskaya, O.V. (2004) Physics of Protein Folding. Physics of Life Reviews, 1, 23-56.
http://dx.doi.org/10.1016/j.plrev.2004.03.001
|
[58]
|
Kuznetsova, I., Turoverov, K. and Uversky, V. (2004) Use of the Phase Diagram Method to Analyze the Protein Unfolding-Refolding Reactions: Fishing out the “Invisible” Intermediates. Journal of Proteome Research, 3, 485-494.
http://dx.doi.org/10.1021/pr034094y
|
[59]
|
Lin, M.M. and Zewail, A.H. (2012) Protein Folding—Simplicity in Complexity. Annalen Der Physik, 524, 379-391.
http://dx.doi.org/10.1002/andp.201200501
|
[60]
|
Vendruscolo, M. and Dobson, C.M. (2005) Towards Complete Descriptions of the Free-Energy Landscapes of Proteins. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363, 433-452.
http://dx.doi.org/10.1098/rsta.2004.1501
|
[61]
|
Wong, G.C.L. and Pollack, L. (2010) Electrostatics of Strongly Charged Biological Polymers: Ion-Mediated Interactions and Self-Organization in Nucleic Acids and Proteins. Annual Review of Physical Chemistry, 61, 171-189.
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104436
|
[62]
|
Komar, A.A. (2009) A Pause for Thought along the Co-Translational Folding Pathway. Trends in Biochemical Sciences, 34, 16-24. http://dx.doi.org/10.1016/j.tibs.2008.10.002
|
[63]
|
Pechmann, S. and Frydman, J. (2013) Evolutionary Conservation of Codon Optimality Reveals Hidden Signatures of Cotranslational Folding. Nature Structural & Molecular Biology, 20, 237-243. http://dx.doi.org/10.1038/nsmb.2466
|
[64]
|
Simister, P.C., Schaper, F., O’Reilly, N., McGowan, S. and Feller, S.M. (2011) Self-Organization and Regulation of Intrinsically Disordered Proteins with Folded N-Termini. Plos Biology, 9, e1000591.
http://dx.doi.org/10.1371/journal.pbio.1000591
|
[65]
|
Astumian, R.D. (1997) Thermodynamics and Kinetics of a Brownian Motor. Science, 276, 917-922.
http://dx.doi.org/10.1126/science.276.5314.917
|
[66]
|
Jülicher, F., Ajdari, A. and Prost, J. (1997) Modeling Molecular Motors. Reviews of Modern Physics, 69, 1269-1282.
http://dx.doi.org/10.1103/RevModPhys.69.1269
|
[67]
|
Surrey, T., Nedelec, F., Leibler, S. and Karsenti, E. (2001) Physical Properties Determining Self-Organization of Motors and Microtubules. Science, 292, 1167-1171. http://dx.doi.org/10.1126/science.1059758
|
[68]
|
Geislinger, B., Darnell, E., Farris, K. and Kawai, R. (2005) Are Motor Proteins Power Strokers, Brownian Motors or Both? (Invited Paper). In: Kish, L.B., Lindenberg, K. and Gingl, Z., Eds., Proceedings of SPIE 5845, Noise in Complex Systems and Stochastic Dynamics III, 93-103. http://dx.doi.org/10.1117/12.609464
|
[69]
|
Ge, H. and Qian, H. (2013) Dissipation, Generalized Free Energy and a Self-Consistent Nonequilibrium Thermodynamics of Chemically Driven Open Subsystems. Physical Review E, 87, Article ID: 062125.
http://dx.doi.org/10.1103/PhysRevE.87.062125
|
[70]
|
Howard, J. (2009) Mechanical Signaling in Networks of Motor and Cytoskeletal Proteins. Annual Review of Biophysics, 38, 217-234. http://dx.doi.org/10.1146/annurev.biophys.050708.133732
|
[71]
|
Vogel, S.K., Pavin, N., Maghelli, N., Jülicher, F. and Tolic-Norrelykke, I.M. (2010) Microtubules and Motor Proteins: Mechanically Regulated Self-Organization in Vivo. The European Physical Journal Special Topics, 178, 57-69.
http://dx.doi.org/10.1140/epjst/e2010-01182-6
|
[72]
|
Hodgkin, A. and Huxley, A. (1952) A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve. Journal of Physiology-London, 117, 500-544.
|
[73]
|
Hodgkin, A. (1964) The Ionic Basis of Nervous Conduction. Science, 145, 1148-1154.
http://dx.doi.org/10.1126/science.145.3637.1148
|
[74]
|
Hilt, M. and Zimmermann, W. (2007) Hexagonal, Square and Stripe Patterns of the Ion Channel Density in Biomembranes. Physical Review E, 75, Article ID: 016202. http://dx.doi.org/10.1103/PhysRevE.75.016202
|
[75]
|
Leonetti, M., Nuebler, J. and Homble, F. (2006) Parity-Breaking Bifurcation and Global Oscillation in Patterns of Ion Channels. Physical Review Letters, 96, Article ID: 218101. http://dx.doi.org/10.1103/PhysRevLett.96.218101
|
[76]
|
Jensen, M.O., Jogini, V., Borhani, D.W., Leffler, A.E., Dror, R.O. and Shaw, D.E. (2012) Mechanism of Voltage Gating in Potassium Channels. Science, 336, 229-233. http://dx.doi.org/10.1126/science.1216533
|
[77]
|
Chinarov, V., Gaididei, Y., Kharkyanen, V. and Sitko, S. (1992) Ion Pores in Biological-Membranes as Self-Organized Bistable Systems. Physical Review A, 46, 5232-5241. http://dx.doi.org/10.1103/PhysRevA.46.5232
|
[78]
|
Amaral, C., Carnevale, V., Klein, M.L. and Treptow, W. (2012) Exploring Conformational States of the Bacterial Voltage-Gated Sodium Channel NavAb via Molecular Dynamics Simulations. Proceedings of the National Academy of Sciences of the United States of America, 109, 21336-21341. http://dx.doi.org/10.1073/pnas.1218087109
|
[79]
|
Bjelkmar, P., Niemela, P.S., Vattulainen, I. and Lindahl, E. (2009) Conformational Changes and Slow Dynamics through Microsecond Polarized Atomistic Molecular Simulation of an Integral Kv1.2 Ion Channel. PLoS Computational Biology, 5, e1000289. http://dx.doi.org/10.1371/journal.pcbi.1000289
|
[80]
|
Haider, S., Grottesi, A., Hall, B.A., Ashcroft, F.M. and Sansom, M.S.P. (2005) Conformational Dynamics of the Ligand-Binding Domain of Inward Rectifier K Channels as Revealed by Molecular Dynamics Simulations: Toward an Understanding of Kir Channel Gating. Biophysical Journal, 88, 3310-3320.
http://dx.doi.org/10.1529/biophysj.104.052019
|
[81]
|
McCusker, E.C., Bagneris, C., Naylor, C.E., Cole, A.R., D’Avanzo, N., Nichols, C.G., et al. (2012) Structure of a Bacterial Voltage-Gated Sodium Channel Pore Reveals Mechanisms of Opening and Closing. Nature Communications, 3, Article Number: 1102. http://dx.doi.org/10.1038/ncomms2077
|
[82]
|
Payandeh, J., Scheuer, T., Zheng, N. and Catterall, W.A. (2011) The Crystal Structure of a Voltage-Gated Sodium Channel. Nature, 475, 353-358. http://dx.doi.org/10.1038/nature10238
|
[83]
|
Tayefeh, S., Kloss, T., Kreim, M., Gebhardt, M., Baumeister, D., Hertel, B., et al. (2009) Model Development for the Viral Kcv Potassium Channel. Biophysical Journal, 96, 485-498. http://dx.doi.org/10.1016/j.bpj.2008.09.050
|
[84]
|
Vargas, E., Yarov-Yarovoy, V., Khalili-Araghi, F., Catterall, W.A., Klein, M.L., Tarek, M., et al. (2012) An Emerging Consensus on Voltage-Dependent Gating from Computational Modeling and Molecular Dynamics Simulations. The Journal of General Physiology, 140, 587-594. http://dx.doi.org/10.1085/jgp.201210873
|
[85]
|
Christophorov, L.N., Kharkyanen, V.N. and Sit’ko, S.P. (1991) On the Concept of the Non-Equilibrium Conformon (Self-Organization of a Selected Degree of Freedom in Biomolecular Systems). Journal of Biological Physics, 18, 191-202.
|
[86]
|
Zarubin, D., Zhuchkova, E. and Schreiber, S. (2012) Effects of Cooperative Ion-Channel Interactions on the Dynamics of Excitable Membranes. Physical Review E, 85, Article ID: 061904. http://dx.doi.org/10.1103/PhysRevE.85.061904
|
[87]
|
Park, C., Shcheglovitov, A. and Dolmetsch, R. (2010) The CRAC Channel Activator STIM1 Binds and Inhibits L- Type Voltage-Gated Calcium Channels. Science, 330, 101-105. http://dx.doi.org/10.1126/science.1191027
|
[88]
|
Jung, P., Swaminathan, D. and Ullah, A. (2010) Calcium Spikes: Chance or Necessity? Chemical Physics, 375, 625- 629. http://dx.doi.org/10.1016/j.chemphys.2010.05.010
|
[89]
|
Katona, G., Snijder, A., Gourdon, P., Andréasson, U., Hansson, U., Andréasson, L.-E., et al. (2005) Conformational Regulation of Charge Recombination Reactions in a Photosynthetic Bacterial Reaction Center. Nature Structural & Molecular Biology, 12, 630-631. http://dx.doi.org/10.1038/nsmb948
|
[90]
|
Kleinfeld, D., Okamura, M. and Feher, G. (1984) Electron-Transfer Kinetics in Photosynthetic Reaction Centers Cooled to Cryogenic Temperatures in the Charge-Separated State—Evidence for Light-Induced Structural-Changes. Biochemistry, 23, 5780-5786. http://dx.doi.org/10.1021/bi00319a017
|
[91]
|
Kononenko, A., Noks, P., Chamorovskii, S., Rubin, A., Likhtenshtein, G., Krupyanskii, Y., et al. (1986) Electron-Transfer and Intermolecular Dynamics of Photosynthetic Reaction Centers. Khimicheskaya Fizika, 5, 795-804.
|
[92]
|
Wohri, A.B., Katona, G., Johansson, L.C., Fritz, E., Malmerberg, E., Andersson, M., et al. (2010) Light-Induced Structural Changes in a Photosynthetic Reaction Center Caught by Laue Diffraction. Science, 328, 630-633.
http://dx.doi.org/10.1126/science.1186159
|
[93]
|
Christophorov, L.N. (1995) Conformation-Dependent Charge-Transport—A New Stochastic Approach. Physics Letters A, 205, 14-17. http://dx.doi.org/10.1016/0375-9601(95)00462-C
|
[94]
|
Goushcha, A.O., Kharkyanen, V., Scott, G. and Holzwarth, A. (2000) Self-Regulation Phenomena in Bacterial Reaction Centers. I. General Theory. Biophysical Journal, 79, 1237-1252.
|
[95]
|
Andréasson, U. and Andréasson, L.-E. (2003) Characterization of a Semi-Stable, Charge-Separated State in Reaction Centers from Rhodobacter sphaeroides. Photosynthesis Research, 75, 223-233.
http://dx.doi.org/10.1023/A:1023944605460
|
[96]
|
Deshmukh, S.S., Williams, J.C., Allen, J.P. and Kalman, L. (2011) Light-Induced Conformational Changes in Photosynthetic Reaction Centers: Dielectric Relaxation in the Vicinity of the Dimer. Biochemistry, 50, 340-348.
http://dx.doi.org/10.1021/bi101496c
|
[97]
|
Malferrari, M., Mezzetti, A., Francia, F. and Venturoli, G. (2013) Effects of Dehydration on Light-Induced Conformational Changes in Bacterial Photosynthetic Reaction Centers Probed by Optical and Differential FTIR Spectroscopy. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1827, 328-339. http://dx.doi.org/10.1016/j.bbabio.2012.10.009
|
[98]
|
Christophorov, L.N. and Kharkyanen, V.N. (2005) Synergetic Mechanisms of Structural Regulation of the Electron Transfer and Other Reactions of Biological Macromolecules. Chemical Physics, 319, 330-341.
http://dx.doi.org/10.1016/j.chemphys.2005.06.029
|
[99]
|
Christophorov, L.N., Kharkyanen, V.N. and Berezetskaya, N.M. (2013) Molecular Self-Organization: A Single Molecule Aspect. Chemical Physics Letters, 583, 170-174. http://dx.doi.org/10.1016/j.cplett.2013.08.005
|
[100]
|
Tributsch, H. and Pohlmann, L. (1997) Synergetic Electron Transfer in Molecular Electronic and Photosynthetic Mechanisms. Journal of Electroanalytical Chemistry, 438, 37-41. http://dx.doi.org/10.1016/S0022-0728(96)05061-9
|
[101]
|
Kirchhoff, H., Haase, W., Haferkamp, S., Schott, T., Borinski, M., Kubitscheck, U., et al. (2007) Structural and Functional Self-Organization of Photosystem II in Grana Thylakoids. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1767, 1180-1188. http://dx.doi.org/10.1016/j.bbabio.2007.05.009
|
[102]
|
Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.-K., Mancal, T., Cheng, Y.-C., et al. (2007) Evidence for Wavelike Energy Transfer through Quantum Coherence in Photosynthetic Systems. Nature, 446, 782-786.
http://dx.doi.org/10.1038/nature05678
|
[103]
|
Novoderezhkin, V., Monshouwer, R. and van Grondelle, R. (2000) Electronic and Vibrational Coherence in the Core Light-Harvesting Antenna of Rhodopseudomonas viridis. Journal of Physical Chemistry B, 104, 12056-12071.
http://dx.doi.org/10.1021/jp001881z
|
[104]
|
Prokhorenko, V., Holzwarth, A., Nowak, F. and Aartsma, T. (2002) Growing-In of Optical Coherence in the FMO Antenna Complexes. Journal of Physical Chemistry B, 106, 9923-9933. http://dx.doi.org/10.1021/jp025758e
|
[105]
|
Collini, E., Wong, C.Y., Wilk, K.E., Curmi, P.M.G., Brumer, P. and Scholes, G.D. (2010) Coherently Wired Light- Harvesting in Photosynthetic Marine Algae at Ambient Temperature. Nature, 463, 644-647.
http://dx.doi.org/10.1038/nature08811
|
[106]
|
Hildner, R., Brinks, D., Nieder, J.B., Cogdell, R.J. and van Hulst, N.F. (2013) Quantum Coherent Energy Transfer over Varying Pathways in Single Light-Harvesting Complexes. Science, 340, 1448-1451.
http://dx.doi.org/10.1126/science.1235820
|
[107]
|
Levitz, J., Pantoja, C., Gaub, B., Janovjak, H., Reiner, A., Hoagland, A., et al. (2013) Optical Control of Metabotropic Glutamate Receptors. Nature Neuroscience, 16, 507-516. http://dx.doi.org/10.1038/nn.3346
|
[108]
|
Vasiliauskas, D., Mazzoni, E.O., Sprecher, S.G., Brodetskiy, K., Johnston Jr., R.J., Lidder, P., et al. (2011) Feedback from Rhodopsin Controls Rhodopsin Exclusion in Drosophila Photoreceptors. Nature, 479, 108-112.
http://dx.doi.org/10.1038/nature10451
|
[109]
|
Field, G.D. and Rieke, F. (2002) Mechanisms Regulating Variability of the Single Photon Responses of Mammalian Rod Photoreceptors. Neuron, 35, 733-747. http://dx.doi.org/10.1016/S0896-6273(02)00822-X
|
[110]
|
Whitlock, G. and Lamb, T. (1999) Variability in the Time Course of Single Photon Responses from Toad Rods Termination of Rhodopsin's Activity. Neuron, 23, 337-351. http://dx.doi.org/10.1016/S0896-6273(00)80784-9
|
[111]
|
Caruso, G., Bisegna, P., Andreucci, D., Lenoci, L., Gurevich, V.V., Hamm, H.E., et al. (2011) Identification of Key Factors That Reduce the Variability of the Single Photon Response. Proceedings of the National Academy of Sciences of the United States of America, 108, 7804-7807. http://dx.doi.org/10.1073/pnas.1018960108
|
[112]
|
Pumir, A., Graves, J., Ranganathan, R. and Shraiman, B.I. (2008) Systems Analysis of the Single Photon Response in Invertebrate Photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 105, 10354-10359. http://dx.doi.org/10.1073/pnas.0711884105
|
[113]
|
Smith, E., Krishnamurthy, S., Fontana, W. and Krakauer, D. (2011) Nonequilibrium Phase Transitions in Biomolecular Signal Transduction. Physical Review E, 84, Article ID: 051917. http://dx.doi.org/10.1103/PhysRevE.84.051917
|
[114]
|
Prokhorenko, V., Nagy, A.M., Waschuk, S.A., Brown, L.S., Birge, R.R. and Miller, R.J.D. (2006) Coherent Control of Retinal Isomerization in Bacteriorhodopsin. Science, 313, 1257-1261. http://dx.doi.org/10.1126/science.1130747
|
[115]
|
Kraack, J.P., Buckup, T. and Motzkus, M. (2013) Coherent High-Frequency Vibrational Dynamics in the Excited Electronic State of All-Trans Retinal Derivatives. Journal of Physical Chemistry Letters, 4, 383-387.
http://dx.doi.org/10.1021/jz302001m
|
[116]
|
Weingart, O. and Garavelli, M. (2012) Modelling Vibrational Coherence in the Primary Rhodopsin Photoproduct. Journal of Chemical Physics, 137, Article ID: 22A523. http://dx.doi.org/10.1063/1.4742814
|
[117]
|
Liebl, U., Lipowski, G., Negrerie, M., Lambry, J., Martin, J. and Vos, M. (1999) Coherent Reaction Dynamics in a Bacterial Cytochrome C Oxidase. Nature, 401, 181-184.
|
[118]
|
Varga, V., Leduc, C., Bormuth, V., Diez, S. and Howard, J. (2009) Kinesin-8 Motors Act Cooperatively to Mediate Length-Dependent Microtubule Depolymerization. Cell, 138, 1174-1183. http://dx.doi.org/10.1016/j.cell.2009.07.032
|
[119]
|
Julicher, F., Kruse, K., Prost, J. and Joanny, J. (2007) Active Behavior of the Cytoskeleton. Physics Reports, 449, 3-28.
http://dx.doi.org/10.1016/j.physrep.2007.02.018
|
[120]
|
Sumino, Y., Nagai, K.H., Shitaka, Y., Tanaka, D., Yoshikawa, K., Chate, H., et al. (2012) Large-Scale Vortex Lattice Emerging from Collectively Moving Microtubules. Nature, 483, 448-452. http://dx.doi.org/10.1038/nature10874
|
[121]
|
Hussain, S., Molloy, J.E. and Khan, S.M. (2013) Spatiotemporal Dynamics of Actomyosin Networks. Biophysical Journal, 105, 1456-1465. http://dx.doi.org/10.1016/j.bpj.2013.08.001
|
[122]
|
Bornens, M. (1989) The Cortical Microfilament System of Lymphoblasts Displays a Periodic Oscillatory Activity in the Absence of Microtubules: Implications for Cell Polarity. The Journal of Cell Biology, 109, 1071-1083.
http://dx.doi.org/10.1083/jcb.109.3.1071
|
[123]
|
Pelling, A.E. (2004) Local Nanomechanical Motion of the Cell Wall of Saccharomyces cerevisiae. Science, 305, 1147- 1150. http://dx.doi.org/10.1126/science.1097640
|
[124]
|
Levayer, R. and Lecuit, T. (2012) Biomechanical Regulation of Contractility: Spatial Control and Dynamics. Trends in Cell Biology, 22, 61-81. http://dx.doi.org/10.1016/j.tcb.2011.10.001
|
[125]
|
Bendix, P.M., Koenderink, G.H., Cuvelier, D., Dogic, Z., Koeleman, B.N., Brieher, W.M., et al. (2008) A Quantitative Analysis of Contractility in Active Cytoskeletal Protein Networks. Biophysical Journal, 94, 3126-3136.
http://dx.doi.org/10.1529/biophysj.107.117960
|
[126]
|
Koehler, S., Schaller, V. and Bausch, A.R. (2011) Collective Dynamics of Active Cytoskeletal Networks. PLoS ONE, 6, e23798. http://dx.doi.org/10.1371/journal.pone.0023798
|
[127]
|
Wang, S. and Wolynes, P. (2012) Active Contractility in Actomyosin Networks. Proceedings of the National Academy of Sciences of the United States of America, 109, 6446-6451. http://dx.doi.org/10.1073/pnas.1204205109
|
[128]
|
Salbreux, G., Joanny, J.F., Prost, J. and Pullarkat, P. (2007) Shape Oscillations of Non-Adhering Fibroblast Cells. Physical Biology, 4, 268-284. http://dx.doi.org/10.1088/1478-3975/4/4/004
|
[129]
|
Chay, T. and Lee, Y. (1985) Phase Resetting and Bifurcation in the Ventricular Myocardium. Biophysical Journal, 47, 641-651.
|
[130]
|
Jung, P. and Gailey, P.C. (2000) The Heartbeat of Extended Clocks. Annalen der Physik, 9, 697-704.
http://dx.doi.org/10.1002/1521-3889(200010)9:9/10<697::AID-ANDP697>3.0.CO;2-B
|
[131]
|
Qu, Z., Nivala, M. and Weiss, J.N. (2013) Calcium Alternans in Cardiac Myocytes: Order from Disorder. Journal of Molecular and Cellular Cardiology, 58, 100-109. http://dx.doi.org/10.1016/j.yjmcc.2012.10.007
|
[132]
|
Cheng, H., Lederer, M., Lederer, W. and Cannell, M. (1996) Calcium Sparks and [Ca2+]i Waves in Cardiac Myocytes. American Journal of Physiology-Cell Physiology, 270, C148-C159.
|
[133]
|
Lechleiter, J., Girard, S., Peralta, E. and Clapham, D. (1991) Spiral Calcium Wave-Propagation and Annihilation in Xenopus-Laevis Oocytes. Science, 252, 123-126. http://dx.doi.org/10.1126/science.2011747
|
[134]
|
Lipp, P. and Niggli, E. (1993) Microscopic Spiral Waves Reveal Positive Feedback in Subcellular Calcium Signaling. Biophysical Journal, 65, 2272-2276.
|
[135]
|
Marchant, J. and Parker, I. (2001) Role of Elementary Ca2+ Puffs in Generating Repetitive Ca2+ Oscillations. EMBO Journal, 20, 65-76. http://dx.doi.org/10.1093/emboj/20.1.65
|
[136]
|
Weiss, J.N. (2006) From Pulsus to Pulseless: The Saga of Cardiac Alternans. Circulation Research, 98, 1244-1253.
http://dx.doi.org/10.1161/01.RES.0000224540.97431.f0
|
[137]
|
Skardal, P.S., Karma, A. and Restrepo, J.G. (2012) Unidirectional Pinning and Hysteresis of Spatially Discordant Alternans in Cardiac Tissue. Physical Review Letters, 108, Article ID: 108103.
http://dx.doi.org/10.1103/PhysRevLett.108.108103
|
[138]
|
Tran, D., Sato, D., Yochelis, A., Weiss, J., Garfinkel, A. and Qu, Z. (2009) Bifurcation and Chaos in a Model of Cardiac Early after Depolarizations. Physical Review Letters, 102, Article ID: 258103.
http://dx.doi.org/10.1103/PhysRevLett.102.258103
|
[139]
|
Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva, E. and Bartocci, E. (2009) Learning and Detecting Emergent Behavior in Networks of Cardiac Myocytes. Communications of the ACM, 52, 97-105.
http://dx.doi.org/10.1145/1467247.1467271
|
[140]
|
Restrepo, J. and Karma, A. (2009) Line-Defect Patterns of Unstable Spiral Waves in Cardiac Tissue. Physical Review E, 79, Article ID: 030906. http://dx.doi.org/10.1103/PhysRevE.79.030906
|
[141]
|
Hori, S., Yamaguchi, Y. and Shimizu, H. (1999) Self-Organization of the Heartbeat as Coordination among Ventricular Myocardial Cells through Mechano-Electrical Feedback. Biological Cybernetics, 80, 1-10.
http://dx.doi.org/10.1007/s004220050500
|
[142]
|
Asby, W.R. (1960) Design for a Brain. John Wiley and Sons, Inc., New York, 286 p.
|
[143]
|
Block, H. (1962) The Perceptron: A Model for Brain Functioning. I. Reviews of Modern Physics, 34, 123-135.
http://dx.doi.org/10.1103/RevModPhys.34.123
|
[144]
|
Rosenblatt, F. (1962) Principles of Neurodynamics: Perceptions and the Theory of Brain Mechanisms. Spartan Books, New York.
|
[145]
|
Willshaw, D. and Malsburg, C. (1976) How Patterned Neural Connections Can Be Set up by Self-Organization. Proceedings of the Royal Society Series B-Biological Sciences, 194, 431-445. http://dx.doi.org/10.1098/rspb.1976.0087
|
[146]
|
Aihara, K., Numajiri, T., Matsumoto, G. and Kotani, M. (1986) Structures of Attractors in Periodically Forced Neural Oscillators. Physics Letters A, 116, 313-317. http://dx.doi.org/10.1016/0375-9601(86)90578-5
|
[147]
|
Canavier, C., Baxter, D., Clark, J. and Byrne, J. (1993) Nonlinear Dynamics in a Model Neuron Provide a Novel Mechanism for Transient Synaptic Inputs to Produce Long-Term Alterations of Postsynaptic Activity. Journal of Neurophysiology, 69, 2252-2257.
|
[148]
|
Chay, T. (1984) Abnormal Discharges and Chaos in a Neuronal Model System. Biological Cybernetics, 50, 301-311.
http://dx.doi.org/10.1007/BF00337079
|
[149]
|
Ermentrout, B. (2010) Mathematical Foundations of Neuroscience. Springer, New York.
|
[150]
|
Ibarz, B., Casado, J.M. and Sanjuan, M.A.F. (2011) Map-Based Models in Neuronal Dynamics. Physics Reports-Review Section of Physics Letters, 501, 1-74. http://dx.doi.org/10.1016/j.physrep.2010.12.003
|
[151]
|
Rothman, J.S., Cathala, L., Steuber, V. and Silver, R.A. (2009) Synaptic Depression Enables Neuronal Gain Control. Nature, 457, 1015-1018. http://dx.doi.org/10.1038/nature07604
|
[152]
|
Guckenheimer, J., Gueron, S. and Harriswarrick, R. (1993) Mapping the Dynamics of a Bursting Neuron. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 341, 345-359.
http://dx.doi.org/10.1098/rstb.1993.0121
|
[153]
|
Komendantov, A.O. and Kononenko, N.I. (1996) Deterministic Chaos in Mathematical Model of Pacemaker Activity in Bursting Neurons of Snail, Helix Pomatia. Journal of Theoretical Biology, 183, 219-230.
http://dx.doi.org/10.1006/jtbi.1996.0215
|
[154]
|
Li, Y., Schmid, G., Hanggi, P. and Schimansky-Geier, L. (2010) Spontaneous Spiking in an Autaptic Hodgkin-Huxley Setup. Physical Review E, 82, Article ID: 061907. http://dx.doi.org/10.1103/PhysRevE.82.061907
|
[155]
|
Hirata, Y., Oku, M. and Aihara, K. (2012) Chaos in Neurons and Its Application: Perspective of Chaos Engineering. Chaos, 22, Article ID: 047511. http://dx.doi.org/10.1063/1.4738191
|
[156]
|
Yuste, R. and Denk, W. (1995) Dendritic Spines as Basic Functional Units of Neuronal Integration. Nature, 375, 682-684. http://dx.doi.org/10.1038/375682a0
|
[157]
|
Legenstein, R. and Maass, W. (2011) Branch-Specific Plasticity Enables Self-Organization of Nonlinear Computation in Single Neurons. Journal of Neuroscience, 31, 10787-10802. http://dx.doi.org/10.1523/JNEUROSCI.5684-10.2011
|
[158]
|
Ahmed, W.W., Williams, B.J., Silver, A.M. and Saif, T.A. (2013) Measuring Nonequilibrium Vesicle Dynamics in Neurons under Tension. Lab on a Chip, 13, 570-578. http://dx.doi.org/10.1039/c2lc41109a
|
[159]
|
Hebb, D.O. (1949) The Organization of Behavior. A Neuropsychological Theory. John Wiley and Sons, Inc., New York.
|
[160]
|
Fuhrmann, G., Segev, I., Markram, H. and Tsodyks, M. (2002) Coding of Temporal Information by Activity-Dependent Synapses. Journal of Neurophysiology, 87, 140-148.
|
[161]
|
Hennig, M.H. (2013) Theoretical Models of Synaptic Short Term Plasticity. Frontiers in Computational Neuroscience, 7, Article Number: 45. http://dx.doi.org/10.3389/fncom.2013.00045
|
[162]
|
O’Donnell, C., Nolan, M.F. and van Rossum, M.C.W. (2011) Dendritic Spine Dynamics Regulate the Long-Term Stability of Synaptic Plasticity. Journal of Neuroscience, 31, 16142-16156.
http://dx.doi.org/10.1523/JNEUROSCI.2520-11.2011
|
[163]
|
Saneyoshi, T., Fortin, D.A. and Soderling, T.R. (2010) Regulation of Spine and Synapse Formation by Activity-Dependent Intracellular Signaling Pathways. Current Opinion in Neurobiology, 20, 108-115.
http://dx.doi.org/10.1016/j.conb.2009.09.013
|
[164]
|
Abbott, L.F. and Nelson, S.B. (2000) Synaptic Plasticity: Taming the Beast. Nature Neuroscience, 3, 1178-1183.
http://dx.doi.org/10.1038/81453
|
[165]
|
Colon-Ramos, D.A. (2009) Synapse Formation in Developing Neural Circuits. In: Hobert, O., Ed., Development of Neural Circuitry, Elsvevier Academic Press Inc., San Diego, 53-79.
|
[166]
|
Bi, G. and Poo, M. (1998) Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength and Postsynaptic Cell Type. Journal of Neuroscience, 18, 10464-10472.
|
[167]
|
Caporale, N. and Dan, Y. (2008) Spike Timing-Dependent Plasticity: A Hebbian Learning Rule. Annual Review of Neuroscience, 31, 25-46. http://dx.doi.org/10.1146/annurev.neuro.31.060407.125639
|
[168]
|
Clopath, C., Buesing, L., Vasilaki, E. and Gerstner, W. (2010) Connectivity Reflects Coding: A Model of Voltage-Based STDP with Homeostasis. Nature Neuroscience, 13, 344-352. http://dx.doi.org/10.1038/nn.2479
|
[169]
|
Cox, K.J.A. and Adams, P.R. (2009) Hebbian Crosstalk Prevents Nonlinear Unsupervised Learning. Frontiers in Computational Neuroscience, 3, 11. http://dx.doi.org/10.3389/neuro.10.011.2009
|
[170]
|
Elliott, T. (2012) Cross-Talk Induces Bifurcations in Nonlinear Models of Synaptic Plasticity. Neural Computation, 24, 455-522. http://dx.doi.org/10.1162/NECO_a_00224
|
[171]
|
Popovych, O.V., Yanchuk, S. and Tass, P.A. (2013) Self-Organized Noise Resistance of Oscillatory Neural Networks with Spike Timing-Dependent Plasticity. Scientific Reports, 3, Article Number: 2926.
http://dx.doi.org/10.1038/srep02926
|
[172]
|
Golding, N., Staff, N. and Spruston, N. (2002) Dendritic Spikes as a Mechanism for Cooperative Long-Term Potentiation. Nature, 418, 326-331. http://dx.doi.org/10.1038/nature00854
|
[173]
|
Harnett, M.T., Makara, J.K., Spruston, N., Kath, W.L. and Magee, J.C. (2012) Synaptic Amplification by Dendritic Spines Enhances Input Cooperativity. Nature, 491, 599-602. http://dx.doi.org/10.1038/nature11554
|
[174]
|
Sjostrom, P.J. and Hausser, M. (2006) A Cooperative Switch Determines the Sign of Synaptic Plasticity in Distal Dendrites of Neocortical Pyramidal Neurons. Neuron, 51, 227-238. http://dx.doi.org/10.1016/j.neuron.2006.06.017
|
[175]
|
Buzsáki, G. (2010) Neural Syntax: Cell Assemblies, Synapsembles and Readers. Neuron, 68, 362-385.
http://dx.doi.org/10.1016/j.neuron.2010.09.023
|
[176]
|
Dupont, E., Hanganu, I.L., Kilb, W., Hirsch, S. and Luhmann, H.J. (2005) Rapid Developmental Switch in the Mechanisms Driving Early Cortical Columnar Networks. Nature, 439, 79-83. http://dx.doi.org/10.1038/nature04264
|
[177]
|
Hopfield, J. (1982) Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proceedings of the National Academy of Sciences of the United States of America, 79, 2554-2558.
http://dx.doi.org/10.1073/pnas.79.8.2554
|
[178]
|
Strogatz, S.H. (2001) Exploring Complex Networks. Nature, 410, 268-276. http://dx.doi.org/10.1038/35065725
|
[179]
|
Van Vreeswijk, C. and Sompolinsky, H. (1996) Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity. Science, 274, 1724-1726.
|
[180]
|
Huang, X. (2004) Spiral Waves in Disinhibited Mammalian Neocortex. The Journal of Neuroscience, 24, 9897-9902.
http://dx.doi.org/10.1523/JNEUROSCI.2705-04.2004
|
[181]
|
Pinto, D.J. and Ermentrout, G.B. (2001) Spatially Structured Activity in Synaptically Coupled Neuronal Networks: I. Traveling Fronts and Pulses. SIAM Journal on Applied Mathematics, 62, 206-225.
http://dx.doi.org/10.1137/S0036139900346453
|
[182]
|
Wilson, H.R. and Cowan, J.D. (1972) Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons. Biophysical Journal, 12, 1-24. http://dx.doi.org/10.1016/S0006-3495(72)86068-5
|
[183]
|
Lazar, A. (2009) SORN: A Self-Organizing Recurrent Neural Network. Frontiers in Computational Neuroscience, 3, 23. http://dx.doi.org/10.3389/neuro.10.023.2009
|
[184]
|
Zheng, P., Dimitrakakis, C. and Triesch, J. (2013) Network Self-Organization Explains the Statistics and Dynamics of Synaptic Connection Strengths in Cortex. Plos Computational Biology, 9, e1002848.
http://dx.doi.org/10.1371/journal.pcbi.1002848
|
[185]
|
Fries, P. (2005) A Mechanism for Cognitive Dynamics: Neuronal Communication through Neuronal Coherence. Trends in Cognitive Sciences, 9, 474-480. http://dx.doi.org/10.1016/j.tics.2005.08.011
|
[186]
|
Akam, T., Oren, I., Mantoan, L., Ferenczi, E. and Kullmann, D.M. (2012) Oscillatory Dynamics in the Hippocampus Support Dentate Gyrus-CA3 Coupling. Nature Neuroscience, 15, 763-768. http://dx.doi.org/10.1038/nn.3081
|
[187]
|
Bressloff, P.C. and Newby, J.M. (2013) Stochastic Models of Intracellular Transport. Reviews of Modern Physics, 85, 135-196. http://dx.doi.org/10.1103/RevModPhys.85.135
|
[188]
|
Junkin, M., Leung, S.L., Whitman, S., Gregorio, C.C. and Wong, P.K. (2011) Cellular Self-Organization by Autocatalytic Alignment Feedback. Journal of Cell Science, 124, 4213-4220. http://dx.doi.org/10.1242/jcs.088898
|
[189]
|
Qian, H. (2012) Cooperativity in Cellular Biochemical Processes: Noise-Enhanced Sensitivity, Fluctuating Enzyme, Bistability with Nonlinear Feedback and Other Mechanisms for Sigmoidal Responses. Annual Review of Biophysics, 41, 179-204. http://dx.doi.org/10.1146/annurev-biophys-050511-102240
|
[190]
|
Tyson, J., Chen, K. and Novak, B. (2003) Sniffers, Buzzers, Toggles and Blinkers: Dynamics of Regulatory and Signaling Pathways in the Cell. Current Opinion in Cell Biology, 15, 221-231.
http://dx.doi.org/10.1016/S0955-0674(03)00017-6
|
[191]
|
Bray, D. (2009) Wetware: A Computer in Every Living Cell. Yale University Press, New Haven, London.
|
[192]
|
Santos, S.D.M., Verveer, P.J. and Bastiaens, P.I.H. (2007) Growth Factor-Induced MAPK Network Topology Shapes Erk Response Determining PC-12 Cell Fate. Nature Cell Biology, 9, 324-330. http://dx.doi.org/10.1038/ncb1543
|
[193]
|
Ivanov, P., Amaral, L., Goldberger, A. and Stanley, H. (1998) Stochastic Feedback and the Regulation of Biological Rhythms. Europhysics Letters, 43, 363-368. http://dx.doi.org/10.1209/epl/i1998-00366-3
|
[194]
|
Shiogai, Y., Stefanovska, A. and McClintock, P.V.E. (2010) Nonlinear Dynamics of Cardiovascular Ageing. Physics Reports, 488, 51-110. http://dx.doi.org/10.1016/j.physrep.2009.12.003
|
[195]
|
Wagner, C. and Persson, P. (1998) Chaos in the Cardiovascular System: An Update. Cardiovascular Research, 40, 257-264. http://dx.doi.org/10.1016/S0008-6363(98)00251-X
|
[196]
|
Moorman, J.R., Delos, J.B., Flower, A.A., Cao, H., Kovatchev, B.P., Richman, J.S., et al. (2011) Cardiovascular Oscillations at the Bedside: Early Diagnosis of Neonatal Sepsis Using Heart Rate Characteristics Monitoring. Physiological Measurement, 32, 1821-1832. http://dx.doi.org/10.1088/0967-3334/32/11/S08
|
[197]
|
Aubert, A.E., Vandeput, S., Beckers, F., Liu, J., Verheyden, B. and Van Huffel, S. (2009) Complexity of Cardiovascular Regulation in Small Animals. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367, 1239-1250. http://dx.doi.org/10.1098/rsta.2008.0276
|
[198]
|
Costa, M.D., Peng, C.-K. and Goldberger, A.L. (2008) Multiscale Analysis of Heart Rate Dynamics: Entropy and Time Irreversibility Measures. Cardiovascular Engineering, 8, 88-93. http://dx.doi.org/10.1007/s10558-007-9049-1
|
[199]
|
Perkiomaki, J., Makikallio, T. and Huikuri, H. (2005) Fractal and Complexity Measures of Heart Rate Variability. Clinical and Experimental Hypertension, 27, 149-158. http://dx.doi.org/10.1081/CEH-200048742
|
[200]
|
Kohl, P. and Sachs, F. (2001) Mechanoelectric Feedback in Cardiac Cells. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 359, 1173-1185. http://dx.doi.org/10.1098/rsta.2001.0824
|
[201]
|
Garrett, D.D., Samanez-Larkin, G.R., MacDonald, S.W.S., Lindenberger, U., McIntosh, A.R. and Grady, C.L. (2013) Moment-to-Moment Brain Signal Variability: A Next Frontier in Human Brain Mapping? Neuroscience and Biobehavioral Reviews, 37, 610-624. http://dx.doi.org/10.1016/j.neubiorev.2013.02.015
|
[202]
|
Guidolin, D., Albertin, G., Guescini, M., Fuxe, K. and Agnati, L.F. (2011) Central Nervous System and Computation. The Quarterly Review of Biology, 86, 265-285. http://dx.doi.org/10.1086/662456
|
[203]
|
Haken, H. (2007) Brain Dynamics: Synchronization and Activity Patterns in Pulse-Coupled Neural Nets with Delays and Noise. Springer, Berlin, New York.
|
[204]
|
Schoner, G. and Kelso, J. (1988) Dynamic Pattern Generation in Behavioral and Neural Systems. Science, 239, 1513-1520. http://dx.doi.org/10.1126/science.3281253
|
[205]
|
Watts, D. and Strogatz, S. (1998) Collective Dynamics of “Small-World” Networks. Nature, 393, 440-442.
http://dx.doi.org/10.1038/30918
|
[206]
|
Park, H. and Friston, K. (2013) Structural and Functional Brain Networks: From Connections to Cognition. Science, 342, 1238411-1238411. http://dx.doi.org/10.1126/science.1238411
|
[207]
|
Stam, C.J. and van Straaten, E.C.W. (2012) The Organization of Physiological Brain Networks. Clinical Neurophysiology, 123, 1067-1087. http://dx.doi.org/10.1016/j.clinph.2012.01.011
|
[208]
|
Rubinov, M., Sporns, O., van Leeuwen, C. and Breakspear, M. (2009) Symbiotic Relationship between Brain Structure and Dynamics. BMC Neuroscience, 10, 55. http://dx.doi.org/10.1186/1471-2202-10-55
|
[209]
|
Tokuda, I.T., Han, C.E., Aihara, K., Kawato, M. and Schweighofer, N. (2010) The Role of Chaotic Resonance in Cerebellar Learning. Neural Networks, 23, 836-842. http://dx.doi.org/10.1016/j.neunet.2010.04.006
|
[210]
|
Frank, T.D., Michelbrink, M., Beckmann, H. and Schollhorn, W.I. (2007) A Quantitative Dynamical Systems Approach to Differential Learning: Self-Organization Principle and Order Parameter Equations. Biological Cybernetics, 98, 19-31. http://dx.doi.org/10.1007/s00422-007-0193-x
|
[211]
|
Obermayer, K., Blasdel, G. and Schulten, K. (1992) Statistical-Mechanical Analysis of Self-Organization and Pattern Formation during the Development of Visual Maps. Physical Review A, 45, 7568-7589.
http://dx.doi.org/10.1103/PhysRevA.45.7568
|
[212]
|
Kaschube, M., Schnabel, M., Lowel, S., Coppola, D.M., White, L.E. and Wolf, F. (2010) Universality in the Evolution of Orientation Columns in the Visual Cortex. Science, 330, 1113-1116. http://dx.doi.org/10.1126/science.1194869
|
[213]
|
Dean, H.L., Hagan, M.A. and Pesaran, B. (2012) Only Coherent Spiking in Posterior Parietal Cortex Coordinates Looking and Reaching. Neuron, 73, 829-841. http://dx.doi.org/10.1016/j.neuron.2011.12.035
|
[214]
|
Hellman, L., Nakada, F., Curti, J., Weitzman, E., Kream, J., Roffwarg, H., et al. (1970) Cortisol Is Secreted Episodically by Normal Man. Journal of Clinical Endocrinology & Metabolism, 30, 411-422.
|
[215]
|
Veldhuis, J., Keenan, D.M. and Pincus, S.M. (2008) Motivations and Methods for Analyzing Pulsatile Hormone Secretion. Endocrine Reviews, 29, 823-864. http://dx.doi.org/10.1210/er.2008-0005
|
[216]
|
Smith, W. (1980) Hypothalamic Regulation of Pituitary Secretion of Luteinizing Hormone—II Feedback Control of Gonadotropin Secretion. Bulletin of Mathematical Biology, 42, 57-78. http://dx.doi.org/10.1007/BF02462366
|
[217]
|
Greenhalgh, D. and Khan, Q.J.A. (2009) A Delay Differential Equation Mathematical Model for the Control of the Hormonal System of the Hypothalamus, the Pituitary and the Testis in Man. Nonlinear Analysis: Theory, Methods & Applications, 71, e925-e935. http://dx.doi.org/10.1016/j.na.2009.01.031
|
[218]
|
Prank, K., Harms, H., Dammig, M., Brabant, G., Mitschke, F. and Hesch, R. (1994) Is There Low-Dimensional Chaos in Pulsatile Secretion of Parathyroid-Hormone in Normal Human-Subjects. American Journal of Physiology, 266, E653-E658.
|
[219]
|
Papavasiliou, S.S., Brue, T., Jaquet, P. and Castanas, E. (1995) Pattern of Prolactin Diurnal Secretion in Normal Humans: Evidence for Nonlinear Dynamics. Neuroendocrinology, 62, 444-453. http://dx.doi.org/10.1159/000127034
|
[220]
|
Hamann, H., Schmickl, T. and Crailsheim, K. (2012) A Hormone-Based Controller for Evaluation-Minimal Evolution in Decentrally Controlled Systems. Artificial Life, 18, 165-198.
|
[221]
|
Keenan, D.M., Wang, X., Pincus, S.M. and Veldhuis, J.D. (2012) Modeling the Nonlinear Time Dynamics of Multidimensional Hormonal Systems: Time Dynamics of Hormonal Systems. Journal of Time Series Analysis, 33, 779-796.
http://dx.doi.org/10.1111/j.1467-9892.2012.00795.x
|
[222]
|
Londergan, C. and Peacock-Lopez, E. (1998) Dynamic Model of Hormonal Systems Coupled by Negative Feedback. Biophysical Chemistry, 73, 85-107. http://dx.doi.org/10.1016/S0301-4622(98)00140-9
|
[223]
|
Sriram, K., Rodriguez-Fernandez, M. and Doyle, F.J. (2012) Modeling Cortisol Dynamics in the Neuro-Endocrine Axis Distinguishes Normal, Depression and Post-Traumatic Stress Disorder (PTSD) in Humans. PLoS Computational Biology, 8, e1002379. http://dx.doi.org/10.1371/journal.pcbi.1002379
|
[224]
|
Zhusubaliyev, Z.T., Churilov, A.N. and Medvedev, A. (2012) Bifurcation Phenomena in an Impulsive Model of Non-Basal Testosterone Regulation. Chaos, 22, Article ID: 013121. http://dx.doi.org/10.1063/1.3685519
|
[225]
|
Shapiro, J.A. (2013) Rethinking the (Im) Possible in Evolution. Progress in Biophysics & Molecular Biology, 111, 92-96. http://dx.doi.org/10.1016/j.pbiomolbio.2012.08.016
|
[226]
|
Ginter, E., Simko, V. and Dolinska, S. (2009) Paradoxes in Medicine: An Access to New Knowledge? Bratislava Medical Journal-Bratislavske Lekarske Listy, 110, 112-115.
|
[227]
|
Aslanidis, S., Pyrpasopoulou, A., Douma, S. and Triantafyllou, A. (2008) Tumor Necrosis Factor—A Antagonist—Induced Psoriasis: Yet Another Paradox in Medicine. Clinical Rheumatology, 27, 377-380.
http://dx.doi.org/10.1007/s10067-007-0789-5
|
[228]
|
Gillie, O. (2012) The Scots’ Paradox: Can Sun Exposure, or Lack of it, Explain Major Paradoxes in Epidemiology? Anticancer Research, 32, 237-248.
|
[229]
|
Smith, S., Hauben, M. and Aronson, J.K. (2012) Paradoxical and Bidirectional Drug Effects. Drug Safety, 35, 173-189.
|
[230]
|
Baker, S.G., Cappuccio, A. and Potter, J.D. (2010) Research on Early-Stage Carcinogenesis: Are We Approaching Paradigm Instability? Journal of Clinical Oncology, 28, 3215-3218. http://dx.doi.org/10.1200/JCO.2010.28.5460
|
[231]
|
Baker, S.G. and Kramer, B.S. (2007) Paradoxes in Carcinogenesis: New Opportunities for Research Directions. BMC Cancer, 7, 151. http://dx.doi.org/10.1186/1471-2407-7-151
|
[232]
|
Hyland, G.J. (2009) Frohlich’s Coherent Excitations & the Cancer Problem—A Retrospecive Overview of His Guiding Philosophy1. Electromagnetic Biology and Medicine, 28, 316-329. http://dx.doi.org/10.1080/15368370802708827
|
[233]
|
Ao, P., Galas, D., Hood, L. and Zhu, X. (2008) Cancer as Robust Intrinsic State of Endogenous Molecular-Cellular Network Shaped by Evolution. Medical Hypotheses, 70, 678-684. http://dx.doi.org/10.1016/j.mehy.2007.03.043
|
[234]
|
Plankar, M., Del Giudice, E., Tedeschi, A. and Jerman, I. (2012) The Role of Coherence in a Systems View of Cancer Development. Theoretical Biology Forum, 105, 15-46.
|
[235]
|
Pokorny, J. (2009) Biophysical Cancer Transformation Pathway. Electromagnetic Biology and Medicine, 28, 105-123.
http://dx.doi.org/10.1080/15368370802711615
|
[236]
|
Deisboeck, T.S. and Couzin, I.D. (2009) Collective Behavior in Cancer Cell Populations. BioEssays, 31, 190-197.
http://dx.doi.org/10.1002/bies.200800084
|
[237]
|
Dinicola, S., D’Anselmi, F., Pasqualato, A., Proietti, S., Lisi, E., Cucina, A., et al. (2011) A Systems Biology Approach to Cancer: Fractals, Attractors and Nonlinear Dynamics. OMICS: A Journal of Integrative Biology, 15, 93-104.
http://dx.doi.org/10.1089/omi.2010.0091
|
[238]
|
Khain, E. and Sander, L. (2006) Dynamics and Pattern Formation in Invasive Tumor Growth. Physical Review Letters, 96, Article ID: 188103. http://dx.doi.org/10.1103/PhysRevLett.96.188103
|
[239]
|
Perfahl, H., Byrne, H.M., Chen, T., Estrella, V., Alarcón, T., Lapin, A., et al. (2011) Multiscale Modeling of Vascular Tumour Growth in 3D: The Roles of Domain Size and Boundary Conditions. PLoS ONE, 6, e14790.
http://dx.doi.org/10.1371/journal.pone.0014790
|
[240]
|
Jiao, Y. and Torquato, S. (2013) Evolution and Morphology of Microenvironment-Enhanced Malignancy of Three-Dimensional Invasive Solid Tumors. Physical Review E, 87, Article ID: 052707.
http://dx.doi.org/10.1103/PhysRevE.87.052707
|
[241]
|
Davies, P.C.W., Demetrius, L. and Tuszynski, J.A. (2011) Cancer as a Dynamical Phase Transition. Theoretical Biology and Medical Modeling, 8, 30. http://dx.doi.org/10.1186/1742-4682-8-30
|
[242]
|
Luther, S., Fenton, F.H., Kornreich, B.G., Squires, A., Bittihn, P., Hornung, D., et al. (2011) Low-Energy Control of Electrical Turbulence in the Heart. Nature, 475, 235-239. http://dx.doi.org/10.1038/nature10216
|
[243]
|
Bogaert, C., Beckers, F., Ramaekers, D. and Aubert, A. (2001) Analysis of Heart Rate Variability with Correlation Dimension Method in a Normal Population and in Heart Transplant Patients. Autonomic Neuroscience-Basic & Clinical, 90, 142-147. http://dx.doi.org/10.1016/S1566-0702(01)00280-6
|
[244]
|
Richman, J. and Moorman, J. (2000) Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278, H2039-H2049.
|
[245]
|
Ivanov, P., Amaral, L., Goldberger, A., Havlin, S., Rosenblum, M., Struzik, Z., et al. (1999) Multifractality in Human Heartbeat Dynamics. Nature, 399, 461-465. http://dx.doi.org/10.1038/20924
|
[246]
|
Stam, C. (2005) Nonlinear Dynamical Analysis of EEG and MEG: Review of an Emerging Field. Clinical Neurophysiology, 116, 2266-2301. http://dx.doi.org/10.1016/j.clinph.2005.06.011
|
[247]
|
El Boustani, S. and Destexhe, A. (2010) Brain Dynamics at Multiple Scales: Can One Reconcile the Apparent Low-Dimensional Chaos of Macroscopic Variables with the Seemingly Stochastic Behavior of Single Neurons? International Journal of Bifurcation and Chaos, 20, 1687-1702. http://dx.doi.org/10.1142/S0218127410026769
|
[248]
|
Phothisonothai, M. and Nakagawa, M. (2007) Fractal-Based EEG Data Analysis of Body Parts Movement Imagery Tasks. Journal of Physiological Sciences, 57, 217-226. http://dx.doi.org/10.2170/physiolsci.RP006307
|
[249]
|
Stephan, K.E., Kasper, L., Harrison, L.M., Daunizeau, J., den Ouden, H.E.M., Breakspear, M., et al. (2008) Nonlinear Dynamic Causal Models for fMRI. NeuroImage, 42, 649-662. http://dx.doi.org/10.1016/j.neuroimage.2008.04.262
|
[250]
|
Bosl, W., Tierney, A., Tager-Flusberg, H. and Nelson, C. (2011) EEG Complexity as a Biomarker for Autism Spectrum Disorder Risk. BMC Medicine, 9, 18. http://dx.doi.org/10.1186/1741-7015-9-18
|
[251]
|
Takahashi, T. (2013) Complexity of Spontaneous Brain Activity in Mental Disorders. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 45, 258-266. http://dx.doi.org/10.1016/j.pnpbp.2012.05.001
|
[252]
|
Lehnertz, K. (2008) Epilepsy and Nonlinear Dynamics. Journal of Biological Physics, 34, 253-266.
http://dx.doi.org/10.1007/s10867-008-9090-3
|
[253]
|
Silva, C., Pimentel, I., Andrade, A., Foreid, J. and Ducla-Soares, E. (1999) Correlation Dimension Maps of EEG from Epileptic Absences. Brain Topography, 11, 201-209. http://dx.doi.org/10.1023/A:1022281712161
|
[254]
|
Arendt, T. (2005) Alzheimer’s Disease as a Disorder of Dynamic Brain Self-Organization. Progress in Brain Research, 147, 355-378.
|
[255]
|
Carlino, E., Sigaudo, M., Pollo, A., Benedetti, F., Mongini, T., Castagna, F., et al. (2012) Nonlinear Analysis of Electroencephalogram at Rest and during Cognitive Tasks in Patients with Schizophrenia. Journal of Psychiatry & Neuroscience, 37, 259-266. http://dx.doi.org/10.1503/jpn.110030
|
[256]
|
Bewernitz, M. and Derendorf, H. (2012) Electroencephalogram-Based Pharmacodynamic Measures: A Review. International Journal of Clinical Pharmacology and Therapeutics, 50, 162-184. http://dx.doi.org/10.5414/CP201484
|
[257]
|
Fuqua, J.S. and Rogol, A.D. (2013) Neuroendocrine Alterations in the Exercising Human: Implications for Energy Homeostasis. Metabolism, 62, 911-921. http://dx.doi.org/10.1016/j.metabol.2013.01.016
|
[258]
|
Schwetz, V., Pieber, T. and Obermayer-Pietsch, B. (2012) Mechanisms in Endocrinology: The Endocrine Role of the Skeleton: Background and Clinical Evidence. European Journal of Endocrinology, 166, 959-967.
http://dx.doi.org/10.1530/EJE-12-0030
|
[259]
|
Veldhuis, J., Sharma, A. and Roelfsema, F. (2013) Age-Dependent and Gender-Dependent Regulation of Hypothalamic-Adrenocorticotropic-Adrenal Axis. Endocrinology and Metabolism Clinics of North America, 42, 201-225.
http://dx.doi.org/10.1016/j.ecl.2013.02.002
|
[260]
|
Costa-e-Sousa, R.H. and Hollenberg, A.N. (2012) Minireview: The Neural Regulation of the Hypothalamic-Pituitary-Thyroid Axis. Endocrinology, 153, 4128-4135. http://dx.doi.org/10.1210/en.2012-1467
|
[261]
|
Sato, T. and Clevers, H. (2013) Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications. Science, 340, 1190-1194. http://dx.doi.org/10.1126/science.1234852
|
[262]
|
Sage, A., Tintut, Y., Garfinkel, A. and Demer, L. (2009) Systems Biology of Vascular Calcification. Trends in Cardiovascular Medicine, 19, 118-123.
|
[263]
|
Glazier, P.S. and Davids, K. (2009) Constraints on the Complete Optimization of Human Motion. Sports Medicine, 39, 15-28.
|
[264]
|
Dokoumetzidis, A., Iliadis, A. and Macheras, P. (2001) Nonlinear Dynamics and Chaos Theory: Concepts and Applications Relevant to Pharmacodynamics. Pharmaceutical Research, 18, 415-426.
http://dx.doi.org/10.1023/A:1011083723190
|
[265]
|
Noble, D. (2011) A Theory of Biological Relativity: No Privileged Level of Causation. Interface Focus, 2, 55-64.
http://dx.doi.org/10.1098/rsfs.2011.0067
|