A Review and Update of Analytical and Numerical Solutions of the Terzaghi One-Dimensional Consolidation Equation


Practical resolution of consolidation problems that we often face requires an extensive and solid knowledge of the different parameters highlighted by the Terzaghi one-dimensional consolidation theory. This theory, with its assumptions, leads to a partial differential equation of second order in space and first order in time of pore water pressure. Analytical and numerical resolutions of this equation allow determining the water pressure variation before and after the application of a charge. Numerical modeling has enabled the simulation of the whole results obtained by the two methods of resolution (pressure, degree of consolidation, time factor, among others) to have a physical analysis and a lawful observation that lead to a suitable understanding of the phenomenon of Terzaghi one-dimensional consolidation.

Share and Cite:

Ndiaye, C. , Fall, M. , Ndiaye, M. , Sangare, D. and Tall, A. (2014) A Review and Update of Analytical and Numerical Solutions of the Terzaghi One-Dimensional Consolidation Equation. Open Journal of Civil Engineering, 4, 274-284. doi: 10.4236/ojce.2014.43023.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Qin, A.F., Sun, D.A. and Tan, Y.W. (2010) Analytical Solution to One-Dimensional Consolidation in Unsaturated Soils under Loading Varying Exponentially with Time. Computers and Geotechnics, 37, 233-238.
[2] Hicher, P.Y. (1985) Comportement mécanique des argiles saturées sur divers chemins de sollicitations monotones et cycliques. Application à une modélisation élastoplastique et viscoplastique. Ph.D. Thesis, Université Pierre et Marie-Curie, x p.
[3] Li, X.-L. (1999) Comportement Hydromécanique des Sols Fins: De l’état saturé à l’état non saturé. Ph.D. Thesis, Sciences appliquées de l’Université de Liège, x p.
[4] Magnan, J.P. and Soyez, B. (1988) Déformabilité des Sols. Consolidation. Tassement. C 214 Traité Construction, volume C 21.
[5] Butcher, J.C. (1987) The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods. Wiley, Wiley-Interscience.
[6] The Math Works, Inc., Matlab, Reference Guide, 1984-92.
[7] Torrésani, B. (2009) Introduction à Matlab et octave, Université de Province Aix Marseille I.
[8] Goncalvès, E. (2005) Résolution Numérique, Discrétisation des EDP et EDO, Institut National Polytechnique de Grenoble.
[9] Salazar, G.E.C. (2006) Modélisation du séchage d’un milieu poreux saturé déformable: Prise en compte de la pression du liquide. PhD thesis, Ecole Nationale Supérieure d’Arts et Métiers Centre de Bordeaux.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.