[1]
|
Mohanty, D. (2013) Study of Charge Transport and Device Properties in Low Band Gap Polymer PBDTTPD Based Nanostructure Materials for Solar Cell Applications. M.Tech Thesis, CSIR-National Physical Laboratory, & Academy of Scientific & Innovative Research, New Delhi.
|
[2]
|
Ren, S., Chang, L.-Y., Lim, S.-K., Zhao, J., Smith, M., Zhao, N., Bulovic, V., Bawendi, M. and Gradecˇak, S. (2011) Inorganic-Organic Hybrid Solar Cell: Bridging Quantum Dots to Conjugated Polymer Nanowires. Nano Letters, 11, 3998-4002. http://dx.doi.org/10.1021/nl202435t
|
[3]
|
Dowland, S., Lutz, T., Ward, A., King, S.P., Sudlow, A., Hill, M.S., Molloy, K.C. and Haque, S.A. (2011) Direct Growth of Metal Sulfide Nanoparticle Networks in Solid-State Polymer Films for Hybrid Inorganic-Organic Solar Cells. Advanced Materials, 23, 2739-2744. http://dx.doi.org/10.1002/adma.201100625
|
[4]
|
Kwak, W.-C., Kim, T.G., Lee, W., Han, S.-H. and Sung, Y.-M. (2009) Template-Free Liquid-Phase Synthesis of HighDensity CdS Nanowire Arrays on Conductive Glass. The Journal of Physical Chemistry C, 113, 1615-1619. http://dx.doi.org/10.1021/jp809365z
|
[5]
|
Wang, L., Liu, Y., Jiang, X., Qin, D. and Cao, Y. (2007) Enhancement of Photovoltaic Characteristics Using a Suitable Solvent in Hybrid Polymer/Multiarmed CdS Nanorods Solar Cells. The Journal of Physical Chemistry C, 111, 95389542. http://dx.doi.org/10.1021/jp0715777
|
[6]
|
Zhong, M., Yang, D., Zhang, J., Shi, J., Wang, X. and Li, C. (2012) Improving the Performance of CdS/P3HT Hybrid Inverted Solar Cells by Interfacial Modification. Solar Energy Materials and Solar Cells, 96, 160-165. http://dx.doi.org/10.1016/j.solmat.2011.09.041
|
[7]
|
Leventis, H.C., King, S.P., Sudlow, A., Hill, M.S., Molloy, K.C. and Haque, S.A. (2010) Nanostructured Hybrid Polymer-Inorganic Solar Cell Active Layers Formed by Controllable in Situ Growth of Semiconducting Sulfide Networks. Nano Letters, 10, 1253-1258. http://dx.doi.org/10.1021/nl903787j
|
[8]
|
Lebeau, B. and Innocenzi, P. (2011) Hybrid Materials for Optics and Photonics. Chemical Society Reviews, 40, 886906. http://dx.doi.org/10.1039/c0cs00106f
|
[9]
|
Dong, H., Zhu, H., Meng, Q., Gong, X. and Hu, W. (2012) Organic Photoresponse Materials and Devices. Chemical Society Reviews, 41, 1754-808. http://dx.doi.org/10.1039/c1cs15205j
|
[10]
|
Bhardwaj, R.K., Kushwaha, H.S., Gaur, J., Upreti, T., Bharti, V., Gupta, V., Chaudhary, N., Sharma, G.D., Banerjee, K. and Chand, S. (2012) A Green Approach for Direct Growth of CdS Nanoparticles Network in Poly(3-hexylthiophene2,5-diyl) Polymer Film for Hybrid Photovoltaic. Materials Letters, 89, 195-197. http://dx.doi.org/10.1016/j.matlet.2012.08.071
|
[11]
|
Bhardwaj, R.K., et al. (2014) In-Situ Growth of CdS Nanorods in PTB7 by Solvothermal Process for Hybrid Organic Inorganic Solar Cell Applications. Physics of Semiconductor Devices. Springer International Publishing, Switzerland, 331-333.
|
[12]
|
Bharti, V., Jain, S., Gaur, J., Sonania, A., Mohanty, D., Sharma, G.D. and Chand, S. (2014) Sustainable Organic Polymer Solar Cells Using TiO2 Derived from Automobile Paint Sludge. Physics of Semiconductor Devices, Springer International Publishing, Switzerland, 395-397.
|
[13]
|
Mohanty, D., Bharti, V., Gaur, J., Bhardwaj, R., Sharma, G.D. and Chand, S. (2014) Charge Transport Studies in Pure and CdS Doped PBDTTPD:CdS Nanocomposite for Solar Cell Application. Physics of Semiconductor Devices, Springer International Publishing, Switzerland, 323-325. http://dx.doi.org/10.1007/978-3-319-03002-9_81
|
[14]
|
Gaur J., Jain, S., Chand, S. and Kaushik, N.K. (2014) Tin Sulfide Nanoparticle Synthesis from Waste Waters. American Journal of Analytical Chemistry, 5, 50-54. http://dx.doi.org/10.4236/ajac.2014.52008
|
[15]
|
Gaur, J., Jain, S., Bhatia, R., Lal, A. and Kaushik, N.K. (2013) Synthesis and Characterization of a Novel Copolymer of Glyoxal Dihydrazone and Glyoxal Dihydrazone Bis(dithiocarbamate) and Application in Heavy Metal Ion Removal from Water. Journal of Thermal Analysis and Calorimetry, 112, 1137-1143.
|
[16]
|
Huynh, W.U., Dittmer, J.J. and Alivisatos, A.P. (2002) Hybrid Nanorod-Polymer Solar Cells. Science, 295, 2425-2457. http://dx.doi.org/10.1126/science.1069156
|
[17]
|
Dayal, S., Kopidakis, N., Olson, D.C., Ginley, D.S. and Rumbles, G. (2010) Photovoltaic Devices with a Low Band Gap Polymer and CdSe Nanostructures Exceeding 3% Efficiency. Nano Letters, 10, 239-242. http://dx.doi.org/10.1021/nl903406s
|
[18]
|
Huynh, W.U., Peng, X.G. and Alivisatos, A.P. (1999) CdSe Nanocrystal Rods/Poly(3-Hexylthiophene). Composite Photovoltaic Devices. Advanced Materials, 11, 923-927.
|
[19]
|
Sun, B.Q., Snaith, H.J., Dhoot, A.S., Westenhoff, S. and Greenham, N.C. (2005) Vertically Segregated Hybrid Blends for Photovoltaic Devices with Improved Efficiency. Journal of Applied Physics, 97, Article No. 014914. http://dx.doi.org/10.1063/1.1804613
|
[20]
|
Zhou, Y., Li, Y.C., Zhong, H.Z., Hou, J.H., Ding, Y.Q., Yang, C.H. and Li, Y.F. (2006) Hybrid Nanocrystal/Polymer Solar Cells Based on Tetrapod-Shaped CdSexTe1-x Nanocrystals. Nanotechnology, 17, 4041-4047.
|
[21]
|
Wang, L., Liu, Y.S., Jiang, X., Qin, D.H. and Cao, Y. (2007) Enhancement of Photovoltaic Characteristics Using a Suitable Solvent in Hybrid Polymer/Multiarmed CdS Nanorods Solar Cells. The Journal of Physical Chemistry C, 111, 9538-9542. http://dx.doi.org/10.1021/jp0715777
|
[22]
|
Kaito, C., Saito, Y. and Fujita, K. (1987) A New Preparation Method of Ultrafine Particles of Metallic Sulfides. Japanese Journal of Applied Physics, 26, L1973-L1975.
|
[23]
|
Baker, D.R. and Kama, P.V. (2009) Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures. Advanced Functional Materials, 19, 805-811. http://dx.doi.org/10.1002/adfm.200801173
|
[24]
|
Wright, M. and Uddin, A. (2012) Organic-Inorganic Hybrid Solar Cells: A Comparative Review. Solar Energy Materials & Solar Cells, 107, 87-111. http://dx.doi.org/10.1016/j.solmat.2012.07.006
|
[25]
|
Leventis, H.C., King, S.P., Sudlow, A., Hill, M.S., Molloy, K.C. and Haque, S.A. (2010) Nanostructured Hybrid Polymer-Inorganic Solar Cell Active Layers Formed by Controllable in Situ Growth of Semiconducting Sulfide Networks. Nano Letters, 10, 1253-1258. http://dx.doi.org/10.1021/nl903787j
|
[26]
|
Dowland, S., Lutz, T., Ward, A., King, S.P., Sudlow, A., Hill, M.S., Molloy, K.C. and Haque, S.A. (2011) Direct Growth of Metal Sulfide Nanoparticle Networks in Solid-State Polymer Films for Hybrid Inorganic-Organic Solar Cells. Advanced Materials, 23, 2739-2744. http://dx.doi.org/10.1002/adma.201100625
|
[27]
|
Karlin, K.D. (2005) Progress in Inorganic Chemistry. 53, John Wiley & Sons, Inc., Hoboken, New Jersey.
|