Thermodynamic Formulation of Living Systems and Their Evolution
Luis Felipe del Castillo, Paula Vera-Cruz
DOI: 10.4236/jmp.2011.25047   PDF    HTML     8,812 Downloads   16,032 Views   Citations


The purpose of this review article is to present some of the recent contributions that show the use of thermo-dynamics to describe biological systems and their evolution, illustrating the agreement that this theory pre-sents with the field of evolution. Organic systems are described as thermodynamic systems where entropy is produced by the irreversible processes, considering as an established fact that this entropy is eliminated through their frontiers to preserve life. The necessary and sufficient conditions to describe the evolution of life in the negentropy principle are established. Underlining the fact that the necessary condition requires formulation, which is founded on the principle of minimum entropy production for open systems operating near equilibrium. Other formulations are mentioned, particularly the information theory, the energy inten-siveness hypothesis and the theory of open systems far from equilibrium. Finally suggesting the possibility of considering the lineal formulation as a viable alternative; that is, given the internal constrictions under which a biological system operates, it is possible that the validity of its application is broader than it has been suggested.

Share and Cite:

L. Castillo and P. Vera-Cruz, "Thermodynamic Formulation of Living Systems and Their Evolution," Journal of Modern Physics, Vol. 2 No. 5, 2011, pp. 379-391. doi: 10.4236/jmp.2011.25047.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. Dix, “Toward a Definition of Life: Semantic and Thermodynamic Considerations,” Journal of Theoretical Biology, Vol. 102, No. 2, 1983, pp. 337-340. doi:10.1016/0022-5193(83)90371-5
[2] J. S. Wicken, “Entropy and Evolution: Ground Rules for Discourse,” Systematic Zoology, Vol. 35, No. 1, 1986, pp. 22-36. doi:10.2307/2413288
[3] D. W. McShea, “Possible Largest-Scale Trends in Organismal Evolution: Eight ‘Live Hypotheses’,” Annual Review of Ecology and Systematics, Vol. 29, 1998, pp. 293-318. doi:10.1146/annurev.ecolsys.29.1.293
[4] J. Kestin, “A Course in Thermodynamics,” 2nd Edition, McGraw-Hill, New York, 1979.
[5] E. Schr?dinger, “What is Life? Mind and Matter,” Cambridge University Press, Cambridge, 1944.
[6] L. Demetrius, “Directionality Principles in Thermodynamics and Evolution,” Proceeding of the National Academy of Sciences of the USA, Vol. 94, 1997, pp. 3491-3498. doi:10.1073/pnas.94.8.3491
[7] H. B. Hollinger and M. J. Zenzen, “An Interpretation of Macroscopic Irreversibility within the Newtonian Frame- work,” Philosophy of Science, Vol. 49, No. 3, 1982, pp. 309-354. doi:10.1086/289065
[8] L. Brillouin, “Maxwell’s Demon Cannot Operate: Information and Entropy. I,” Journal of Applied Physics, Vol. 22, No. 3, 1951, pp. 334-337. doi:10.1063/1.1699951
[9] L. Brillouin, “Physical Entropy and Information. II,” Journal of Applied Physics, Vol. 22, No. 3, 1951, pp. 338-343. doi:10.1063/1.1699952
[10] M. Ruse, “Monad to Man: The Concept of Progress in Evolutionaty Biology,” Harvard University Press, Massachusetts, 1996.
[11] I. Prigogine and T. M. Wiame, “Biologie et Thermodynamique del Phénomènes Irréversibles,” Experientia (Basle), Vol. 2, 1946, pp. 451-453.
[12] F. Crick, “Life Itself: Its Origin and Nature,” Simon and Schuster, New York, 1981.
[13] J. Monod, “Chance and Necessity,” Random, New York, 1972.
[14] M. Rossignol, L. Rossignol, R. A. A. Oldeman and S. Bensine-Tizroutine, “Struggle of Life or the Natural History of Stress and Adaptation,” Treemail, The Netherlands, 1998.
[15] B. McDowell, “An Examination of the Ecosystems Perspective in Consideration of New Theories in Biology and Thermodynamics,” Journal of Sociology and Social Welfare, Vol. 21, No. 2, 1994, pp. 49-68.
[16] J. G. Miller, “Living Systems: Basic Concepts,” Behavioral Science, Vol. 10, No. 3, 1965, pp. 193-237. doi:10.1002/bs.3830100302
[17] M. T. Hannan and J. Freeman, “The Population Ecology of Organizations,” The American Journal of Sociology, Vol. 82, No. 5, 1977, pp. 929-964. doi:10.1086/226424
[18] H. B. Callen, “Thermodynamics and an Introduction to Thermostatistics,” 2nd Edition, John Wiley & Sons, New York, 1960.
[19] A. Katchalsky and P. F. Curran, “Nonequilibrium Thermodynamics in Biophysics,” Harvard University Press, Massachusetts, 1981.
[20] A. B. Pippard, “Elements of Classical Thermodynamics,” Cambridge University Press, Cambridge, 1957.
[21] L. D. Landau and E. M. Lifshitz, “Statistical Physics,” 3rd Edition, (Part I by E. M. Liftshitz and L. P. Pitaevskii), Pergamon Press, Oxford, 1980.
[22] G. Lebon, D. Jou and J. Casas-Vázquez “Understanding non-equilibrium Thermodynamics. Foundations, Applications, Frontiers”, Springer-Verlag, Berlin, 2008. doi:10.1007/978-3-540-74252-4
[23] E. B. Jacob, Y. Shapira and A. I. Tauber “Seeking the Foundations: From Schr?dinger’s Negative Entropy to Latent Information,” Physica A, Vol. 359, 2006, pp. 495-524. doi:10.1016/j.physa.2005.05.096
[24] J. M. Rubi, “The Non-Equilibrium Thermodynamics Approach to the Dynamics of Mesoscopic Systems,” Journal of Non-Equilibrium Thermodynamics, Vol. 29, No. 4, 2004, pp. 315-325. doi:10.1515/JNETDY.2004.058
[25] D. Reguera, J. M. Rubí and J. M. Vilar, “The Mesoscopic Dynamics of Thermodynamic Systems,” Journal of Physical Chemistry B, Vol. 109, No. 46, 2005, pp. 21502- 21515. doi:10.1021/jp052904i
[26] L. F. del Castillo, “El Fenómeno Mágico de la ósmosis,” Colección Ciencia para Todos, Vol. 16, Fondo de Cultura Económica, México, 1996.
[27] M. W. Zemansky and R. H. Dittman, “Heat and Thermodynamics: An Intermediate Textbook,” 6th Edition, McGraw-Hill, New York, 1981.
[28] D. ter Haar and H. Wergeland, “Elements of Thermodynamics,” Addison-Wesley Publishing Company, Massachusetts, 1966.
[29] L. Brillouin, “The Negentropy Principle of Information,” Journal of Applied Physics, Vol. 24, No. 9, 1953, pp. 1152-1163. doi:10.1063/1.1721463
[30] V. M. Zhukovsky, “Thermodynamics of Environment,” Journal of Mining and Metallurgy B, Vol. 36, No. 1-2, 2000, pp. 93-102.
[31] R. Swenson and M. T. Turvey, “Thermodynamic Reason for Perception-Action Cycles,” Ecological Psychology, Vol. 3, No. 4, 1991, pp. 317-348. doi:10.1207/s15326969eco0304_2
[32] M. G. Velarde and C. Normand, “Convection,” Scientific American, Vol. 243, No. 1, 1980, pp. 93-108.
[33] C. M. Visser and R. M. Kellogg, “Biorganic Chemistry and the Origin of Life,” Journal of Molecular Evolution, Vol. 11, No. 2, 1978, pp. 163-169. doi:10.1007/BF01733891
[34] H. F. Blum, “Time’s Arrow and Evolution,” 3rd Edition, Princeton University Press, Princeton, 1968.
[35] G. Stent, “That was the Molecular Biology that was,” Science, Vol. 160, No. 3826, 1968, pp. 390-395. doi:10.1126/science.160.3826.390
[36] W. Arthur, “Mechanisms of Morphological Evolution: A Combined Genetic, Developmental and Ecological Approach,” John Wiley & Sons, Chichester, 1984.
[37] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, “Universal Mechanisms of Animal Development,” Molecular Biology of the Cell, 4th Edition, Garland Science, New York, 2002.
[38] W. M. Bortz II, “Aging as Entropy,” Experimental Gerontology, Vol. 21, No. 4-5, 1986, pp. 321-328. doi:10.1016/0531-5565(86)90039-2
[39] W. Arthur, “Theory of the Evolution of Development,” John Wiley & Sons, New York, 1988.
[40] O. Toussaint, P. Dumont, J. F. Dierick, T. Pascal, C. Frippiat, F. Chainiaux, F. Sluse, F. Eliaers and J. Remacle, “Stress-Induced Premature Senescence. Essence of Life, Evolution, Stress, and Aging,” Annals of the New York Academy of Sciences, Vol. 908, 2000, pp. 85-98. doi:10.1111/j.1749-6632.2000.tb06638.x
[41] C. Darwin, “On the Origin of Species,” John Murray, London, 1859.
[42] D. J. Depew and B. H. Weber, “Darwinism Evolving Systems Dynamics and the Genealogy of Natural Selection,” The MIT Press, Cambridge, 1996.
[43] J. Wu and W. Gao, “Spatial Patterns of Species Richness: A Hierarchical Perspective,” Chinese Biodiversity, Vol. 3, 1995, pp. 12-21.
[44] R. E. Ulanowicz and B. M. Hannon, “Life and the Production of Entropy,” Proceedings of the Royal Society of London B, Vol. 232, No. 1267, 1987, pp. 181-192. doi:10.1098/rspb.1987.0067
[45] M. Ziehe and L. Demetrius, “Directionality Theory: an Empirical Study of an Entropic Principle in Life-History Evolution,” Proceedings of the Royal Society B, Vol. 272, No. 1568, 2005, pp. 1185-1194. doi:10.1098/rspb.2004.3032
[46] I. Prigogine, “Time, Structure and Fluctuations,” Science, Vol. 201, No. 4358, 1978, pp. 777-785. doi:10.1126/science.201.4358.777
[47] D. W. Hone and M. J. Benton, “The Evolution of Large Size: How does Cope’s Rule Work?” Trends in Ecology & Evolution, Vol. 20, No. 1, 2005, pp. 4-6. doi:10.1016/j.tree.2004.10.012
[48] J. G. Kingsolver and D. W. Pfennig, “Individual-Level Selection as a Cause of Cope’s Rule of Phyletic Size Increase,” Evolution, Vol. 58, No. 7, 2004, pp. 1608-1612. doi:10.1111/j.0014-3820.2004.tb01740.x
[49] B. van Valkenburgh, X. Wang and J. Damuth, “Cope’s Rule, Hypercarnivory, and Extinction in north American Canids,” Science, Vol. 306, No. 5693, 2004, pp. 101-104. doi:10.1126/science.1102417
[50] J. A. Finarelli, “Testing Hypotheses of the Evolution of Encephalization in the Canidae (Carnivora, Mammalia),” Paleobiology, Vol. 34, No. 1, 2008, pp. 35-45. doi:10.1666/07030.1
[51] J. T. Bonner, “The Evolution of Complexity by Means of Natural Selection,” Princeton University Press, New Jersey, 1988.
[52] M. T. Carrano, “Body-Size Evolution in the Dinosauria,” In: M. T. Carrano, R. W. Blob, T. J. Gaudin and J. R. Wible, Eds., Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles, University of Chicago Press, Chicago, 2006, pp. 225-268.
[53] D. Jou, J. E. Llebot and C. G. Perez, “Fisica para Ciencias de la Vida,” 2nd Edition, McGraw Hill Interamericana, Madrid, 2008.
[54] I. Prigogine, “Introduction to the Thermodynamics of Irreversible Processes,” Wiley & Sons, New York, 1955.
[55] S. R. de Groot, “Thermodynamics of Irreversible Processes,” North-Holland Publishing Company, Amsterdam, 1966.
[56] F. J. Ayala, “The Concept of Biological Progress,” In: F. J. Ayala and T. Dobzhansky, Eds., Studies in the Philosophy of Biology: Reductionism and Related Problems, Macmillan, New York, 1974, pp. 339-354.
[57] D. C. Fisher, “Progress in Organismal Design,” In: D. M. Raup and D. Jablonski, Eds., Patterns and Processes in the History of Life, Springer, Berlin, 1986, pp. 99-117.
[58] J. S. Huxley, “Evolution: The Modern Synthesis,” Harper, New York, 1942.
[59] J. W. Valentine, “Patterns of Taxonomic and Ecological Structure of the Shelf Benthos during Phanerozoic Time,” Palaeontology, Vol. 12, 1969, pp. 684-709.
[60] G. G. Simpson, “The Meaning of Evolution,” Yale University Press, New Haven, 1967.
[61] D. M. Raup, “Testing the Fossil Record for Evolutionary Progress,” In: M. Nitecki, Ed., Evolutionary Progress, Chicago University Press, Chicago, 1988, pp. 293-317.
[62] F. J. Ayala, “Can ‘Progress’ be Defined as a Biological Concept?” In: M. Nitecki, Ed., Evolutionary Progress, Chicago University Press, Chicago, 1988, pp. 75-96.
[63] H. Selye, “A Syndrome Produced by Diverse noxious Agents,” Nature, Vol. 138, 1936, p. 32. doi:10.1038/138032a0
[64] H. Selye, “The General Adaptation Syndrome and the Diseases of Adaptation,” Journal of Clinical Endocrinology, Vol. 6, No. 2, 1946, pp. 117-230. doi:10.1210/jcem-6-2-117
[65] R. S. Boardman and A. H. Cheetham, “Degrees of Colony Dominance in Stenolaemate and Gymnolaemate Bryozoa,” In: R. S. Boardman, A. H. Cheetham and W. A. Oliver, Eds., Animal Colonies: Development and Function through Time, Dowden, Hutchinson & Ross, Stroudsburg, 1973.
[66] S. J. Gould, “Wonderful Life,” Norton, New York, 1989.
[67] P. D. Gingerich, “Quantification and Comparison of Evolutionary Rates,” American Journal of Science, Vol. 293, 1993, pp. 453-478. doi:10.2475/ajs.293.A.453
[68] W. Scharloo, “Canalization: Genetic and Developmental Aspects,” Annual Review of Ecology and Systematics, Vol. 22, 1991, pp. 65-93. doi:10.1146/
[69] R. Lewin, “Patterns in Evolution: The New Molecular View,” W. H. Freeman & Company, New York, 1999.
[70] J. S. Wicken, “Thermodynamics and the Conceptual Structure of Evolutionary Theory,” Journal of Theoretical Biology, Vol. 117, No. 3, 1985, pp. 363-383. doi:10.1016/S0022-5193(85)80149-1
[71] C. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal, Vol. 27, 1948, pp. 379-423, 623-656.
[72] E. T. Jaynes, “Information Theory and Statistical Mechanics,” In: K. Ford, Ed., Statistical Physics, Benjamin, New York, 1963, pp. 181-218.
[73] G. Chaitin, “On the Length of Programs for Computing Finite Binary Sequences,” Journal of the Association for Computing Machinery, Vol. 13, 1966, pp. 547-569.
[74] G. Chaitin, “Randomness and Mathematical Proof,” Scientific American, Vol. 232, No. 5, 1975, pp. 47-52. doi:10.1038/scientificamerican0575-47
[75] L. Brillouin, “Science and Information Theory,” 2nd Edition, Academic Press, New York, 1962.
[76] J. Kestin and J. R. Dorfman, “Course in Statistical Thermodynamics,” Academic Press, New York, 1971.
[77] F. Reif, “Fundamentals of Statistical and Thermal Physics,” McGraw-Hill, Singapore, 1965.
[78] D. R. Brooks, P. H. Leblond and D. D. Cumming, “Information and Entropy in a Simple Evolution Model,” Journal of Theoretical Biology, Vol. 109, No. 1, 1984, pp. 77-93. doi:10.1016/S0022-5193(84)80112-5
[79] D. R. Brooks and E. O. Wiley, “Evolution as an Entropic Phenomenon,” In: J. W. Pollard, Ed., Evolutionary Theory: Paths to the Future, John Wiley and Sons, London, 1984, pp. 141-171.
[80] J. Campbell, “Grammatical Man: Information, Entropy, Language, and Life,” Simon & Schuster, New York, 1982.
[81] N. Wiener, “Cybernetics: Or Control and Communication in the Animal and the Machine,” MIT Press, Massachusetts, 1948.
[82] J. S. Wicken, “Entropy, Information, and Nonequilibrium Evolution,” Systematic Zoology, Vol. 32, No. 4, 1983, pp. 438-443. doi:10.2307/2413170
[83] L. Kari and L. F. Landweber, “Biocomputing in Ciliates,” In: M. Amos, Ed., Cellular Computing, Oxford University Press, Oxford, 2003.
[84] R. D. Knight, L. F. Landweber and M. Yarus, “How Mitochondria Redefine the Code,” Journal of Molecular Evolution, Vol. 53, No. 4-5, 2001, pp. 299-313. doi:10.1007/s002390010220
[85] G. Burger, I. Plante, K. M. Lonergan and M. W. Gray, “The Mitochondrial DNA of the Amoeboid Protozoon, Acanthamoeba Castellanii: Complete Sequence, Gene Content and Genome Organization,” Journal of Molecular Biology, Vol. 245, No. 5, 1995, pp. 522-537. doi:10.1006/jmbi.1994.0043
[86] C. H. Waddington, “New Patterns in Genetics and Development,” Columbia University Press, New York, 1966.
[87] C. J. Smith, “Problems with Entropy in Biology,” Biosystems, Vol. 7, No. 2, 1975, pp. 259-265. doi:10.1016/0303-2647(75)90033-7
[88] N. H. Gregersen, “From Complexity to Life: on the Emergence of Life and Meaning,” Oxford University Press, New York, 2003.
[89] L. Brillouin, “Thermodynamics and Information Theory,” American Scientist, Vol. 38, 1950, pp. 595-599.
[90] P. A. Corning and S. J. Kline, “Thermodynamics, Information and Life. Revisited, Part I: ‘To Be or Entropy’,” Systems Research and Behavioral Science, Vol. 15, 1998, pp. 273-295. doi:10.1002/(SICI)1099-1743(199807/08)15: 4<273::AID-SRES200>3.0.CO;2-B
[91] G. J. Vermeij, “Evolution and Escalation,” Princeton University Press, New Jersey, 1987.
[92] G. J. Vermeij, “The Evolutionary Interaction among Species: Selection, Escalation, and Coevolution,” Annual Review of Ecology and Systematics, Vol. 25, 1994, pp. 219-236. doi:10.1146/
[93] G. J. Vermeij, “Economics, Volcanoes, and Phanerozoic Revolutions,” Paleobiology, Vol. 21, No. 2, 1995, pp. 125-152.
[94] M. Tribus and E. C. McIrvine, “Energy and Information,” Scientific American, Vol. 224, 1971, pp. 179-188. doi:10.1038/scientificamerican0971-179
[95] S. N. Salthe, “The Natural Philosophy of Work,” Entropy, Vol. 9, No. 2, 2007, pp. 83-99. doi:10.3390/e9020083
[96] E. Mayr, “Toward a New Philosophy of Biology,” Harvard University Press, Massachusetts, 1988.
[97] A. Pross, “The Driving Force for Life’s Emergence: Kinetic and Thermodynamic Considerations,” Journal of Theoretical Biology, Vol. 220, No. 3, 2003, pp. 393-406. doi:10.1006/jtbi.2003.3178
[98] S. Chandrasekhar, “Hydrodynamic and Hydromagnetic Stability,” Clarendon, Oxford, 1961.
[99] D. D. Joseph, “Stability of Fluid Motions,” Springer, Berlin, 1976.
[100] A. Movchan, “The Direct Method of Lyapounov in Stability Problems of Elastic Systems,” Journal of Applied Mathematics and Mechanics, Vol. 23, No. 3, 1959, pp. 483-693. doi:10.1016/0021-8928(59)90161-3
[101] A. J. Pritchard, “A Study of the Classical Problem of Hydrodynamic Stability,” IMA Journal of Applied Mathematics, Vol. 4, No. 1, 1968, pp. 78-93. doi:10.1093/imamat/4.1.78
[102] G. Nicoli and I. Prigogine, “Self-Organization in NonEquilibrium Systems: From Dissipative Structures to Order through Fluctuations,” Wiley-Interscience, New York, 1977.
[103] P. Glandsdorv and I. Prigogine, “Structure, Stabilité et Fluctuations,” Masson, Paris, 1971.
[104] D. Kondepudi, R. J. Kaufman and N. Singh, “Chiral Symmetry-Breaking in Sodium-Chlorate Crystallization,” Science, Vol. 250, No. 4983, 1990, pp. 975-976. doi:10.1126/science.250.4983.975
[105] V. Castets, E. Dalos, J. Boissonade and P. de Kepper, “Experimental Evidence of Sustained Standing Turing- Type Nonequilibrium Chemical Patterns,” Physical Review Letters, Vol. 64, No. 24, 1990, pp. 2953-2956. doi:10.1103/PhysRevLett.64.2953
[106] Q. Ouyang and H. L. Swinney, “Transition from a Uniform State to Hexagonal and Striped Turing Patterns,” Nature, Vol. 352, No. 6336, 1991, pp. 610-612. doi:10.1038/352610a0
[107] A. M. Turing, “The Chemical Basis of Morphogenesis,” Philosophical Transactions of the Royal Society of London. Series B - Biological Sciences, Vol. 237, No. 641, 1952, pp. 37-72. doi:10.1098/rstb.1952.0012
[108] M. Tabor, “Chaos and Integrability in nonlinear Dynamics: An Introduction,” Wiley-Interscience, USA, 1989.
[109] P. Davies, “The New Physics: A Synthesis,” In: P. Davies, Ed., The New Physics, Cambrige Unversity Press, Cambridge, 1989.
[110] J. Swift and P. C. Hohenberg, “Hydrodynamic Fluctuations at the Convective Instability,” Physical Review A, Vol. 15, No. 1, 1977, pp. 319-328. doi:10.1103/PhysRevA.15.319
[111] M. C. Cross and P. C. Hohenberg, “Pattern Formation Outside of Equilibrium,” Reviews of Modern Physics, Vol. 65, No. 3, 1993, pp. 851-1112. doi:10.1103/RevModPhys.65.851
[112] K. Ito and Y. P. Gunji, “Self-Organization of Living Systems towards Criticality at the Edge of Chaos,” Biosystems, Vol. 33, No. 1, 1994, pp. 17-24. doi:10.1016/0303-2647(94)90057-4
[113] E. Bodenschatz, W. Pesch and G. Ahlers, “Recent Developments in Rayleigh-Bénard Convection,” Annual Review of Fluid Mechanics, Vol. 32, No. 1, 2000, pp. 709-778. doi:10.1146/annurev.fluid.32.1.709
[114] P. L. Engle, “Conjectures Concerning Complexity and Hierarchy,” Far from Equilibrium, Laurel Highlands Media, Greensburg, 2002.
[115] J. Walleczek, “Self-Organized Biological Dynamics and Nonlinear Control: Toward Understanding Complexity, Chaos and Emergent Function in Living Systems,” Cambridge University Press, Cambridge, 2000.
[116] R. Luzzi, A. R. Vasconcelos and J. G. Ramos, “Predictive Statistical Mechanics: A Nonequilibrium Ensamble Formulation,” Kluwer Academia Publishers, Dordrecht, 2002.
[117] R. A. Eve, S. Horsfall and M. E. Lee, “Chaos, Complexity, and Sociology: Myths, Models, and Theories,” Sage Publications, London, 1997.
[118] R. Boyd and P. J. Richerson, “Culture and the Evolutionary Process,” University of Chicago Press, London, 1988.
[119] L. L. Cavalli-Sforza and M. W. Feldman, “Cultural Trans- mission and Evolution: A Quantitative Approach,” Prince- ton University Press, New Jersey, 1981.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.