[1]
|
T. C. E. Cheng, “An Economic Order Quantity Model with Demand-Dependent Unit Cost,” European Journal of Operational Research, Vol. 40, No. 2, 1989, pp. 252-256. doi:10.1016/0377-2217(89)90334-2
|
[2]
|
M. Ben-Daya and A. Raouf, “Inventory Models Involving Lead Time as a Decision Variable,” Journal of the Operational Research Society, Vol. 45, No. 5, 1994, pp. 579-582.
|
[3]
|
M. O. Abou-El-Ata and K. A. M. Kotb, “Multi-Item EQO Inventory Model with Varying Holding Cost under Two Restrictions: A Geometric Programming Approach,” Production Planning & Control, Vol. 8, No. 6, 1997, pp. 608-611. doi:10.1080/095372897234948
|
[4]
|
J. T. Teng and H. L. Yang, “Deterministic Inventory Lot-Size Models with Time-Varying Demand and Cost under Generalized Holding Costs,” Information and Management Sciences, Vol. 18, No. 2, 2007, pp. 113-125.
|
[5]
|
H. Jung and C. M. Klein, “Optimal Inventory Policies under Decreasing Cost Functions via Geometric Programming,” European Journal of Operational Research, Vol. 132, No. 3, 2001, pp. 628-642. doi:10.1016/S0377-2217(00)00168-5
|
[6]
|
K. Das, T. K. Roy and M. Maiti, “Multi-Item Inventory with Quantity-Dependent Inventory Costs and Demand-Dependent Unit Cost under Imprecise Objective and Restrictions: A Geometric Programming Approach,” Production Planning & Control, Vol. 11, No. 8, 2000, pp. 781-788. doi:10.1080/095372800750038382
|
[7]
|
N. K. Mandal, T. K. Roy and M. Maiti, “Inventory Model of Deteriorated Items with a Constraints: A Geometric Programming Approach,” European Journal of Operational Research, Vol. 173, No. 1, 2006, pp. 199-210. doi:10.1016/j.ejor.2004.12.002
|
[8]
|
K. A. M. Kotb and H. A. Fergany, “Multi-Item EQO Model with Varying Holding Cost: A Geometric Programming Approach,” International Mathematical Forum, Vol. 6, No. 23, 2011, pp. 1135-1144.
|
[9]
|
R. J. Duffin, E. L. Peterson and C. Zener, “Geometric Programming—Theory and Application,” John Wiley, New York, 1967.
|