Compatibility of Quantum Entanglement with the Special Theory of Relativity ()
Abstract
The
Einstein-Podolsky-Rosen paradox is resolved dynamically by using spin-dependent
quantum trajectories inferred from Dirac’s equation for a relativistic
electron. The theory provides a practical computational methodology for
studying entanglement versus disentanglement for realistic Hamiltonians.
Share and Cite:
Ritchie, B. (2014) Compatibility of Quantum Entanglement with the Special Theory of Relativity.
Journal of Quantum Information Science,
4, 92-96. doi:
10.4236/jqis.2014.42009.
Conflicts of Interest
The authors declare no conflicts of interest.
References
[1]
|
Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777. http://dx.doi.org/10.1103/PhysRev.47.777
|
[2]
|
Bell, J.S. (1964) On the Einstein Podolsky Rosen Paradox. Physics, 1, 195-200.
|
[3]
|
Freedman, S.J. and Clauser, J.F. (1972) Experimental Test of Local Hidden-Variable Theories. Physical Review Letters, 28, 938. http://dx.doi.org/10.1103/PhysRevLett.28.938
|
[4]
|
Dirac, P.A.M. (1928) The Quantum Theory of the Electron. Proceedings of the Royal Society (London), A117, 610-624. http://dx.doi.org/10.1098/rspa.1928.0023
|
[5]
|
Ritchie, B. (2011) Quantum molecular dynamics. International Journal of Quantum Chemistry, 111, 1-7. http://dx.doi.org/10.1002/qua.22371
|
[6]
|
Ritchie, B. and Weatherford, C.A. (2013) Quantum-Dynamical Theory of Electron Exchange Correlation. Advances in Physical Chemistry, 2013, Article ID: 497267. http://dx.doi.org/10.1155/2013/497267
|
[7]
|
James, H.M. and Coolidge, A.S. (1933) The Ground State of the Hydrogen Molecule. The Journal of Chemical Physics, 1, 825. http://dx.doi.org/10.1063/1.1749252
|