Compatibility of Quantum Entanglement with the Special Theory of Relativity

Abstract

The Einstein-Podolsky-Rosen paradox is resolved dynamically by using spin-dependent quantum trajectories inferred from Dirac’s equation for a relativistic electron. The theory provides a practical computational methodology for studying entanglement versus disentanglement for realistic Hamiltonians.

Share and Cite:

Ritchie, B. (2014) Compatibility of Quantum Entanglement with the Special Theory of Relativity. Journal of Quantum Information Science, 4, 92-96. doi: 10.4236/jqis.2014.42009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777.
http://dx.doi.org/10.1103/PhysRev.47.777
[2] Bell, J.S. (1964) On the Einstein Podolsky Rosen Paradox. Physics, 1, 195-200.
[3] Freedman, S.J. and Clauser, J.F. (1972) Experimental Test of Local Hidden-Variable Theories. Physical Review Letters, 28, 938.
http://dx.doi.org/10.1103/PhysRevLett.28.938
[4] Dirac, P.A.M. (1928) The Quantum Theory of the Electron. Proceedings of the Royal Society (London), A117, 610-624.
http://dx.doi.org/10.1098/rspa.1928.0023
[5] Ritchie, B. (2011) Quantum molecular dynamics. International Journal of Quantum Chemistry, 111, 1-7.
http://dx.doi.org/10.1002/qua.22371
[6] Ritchie, B. and Weatherford, C.A. (2013) Quantum-Dynamical Theory of Electron Exchange Correlation. Advances in Physical Chemistry, 2013, Article ID: 497267.
http://dx.doi.org/10.1155/2013/497267
[7] James, H.M. and Coolidge, A.S. (1933) The Ground State of the Hydrogen Molecule. The Journal of Chemical Physics, 1, 825. http://dx.doi.org/10.1063/1.1749252

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.