[1]
|
Victor, S.P. and Sampath Kumar, T.S. (2008) BCP Ceramic Microspheres as Drug Delivery Carriers: Synthesis, Characterisation and Doxycycline Release. Journal of Materials Science: Materials in Medicine, 19, 283-290.
http://dx.doi.org/10.1007/s10856-006-0044-7
|
[2]
|
Camargo, N.H.A., et al. (2009) Synthesis and Characterization of Nanostructured Ceramic Powders of Calcium Phosphate and Hydroxyapatite for Dental Applications. Key Engineering Materials, 398, 619-622.
|
[3]
|
Ramay, H.R.R. and Zhang, M. (2004) Biphasic Calcium Phosphate Nanocomposite Porous Scaffolds for Load-Bearing Bone Tissue Engineering. Biomaterials, 25, 5171-5180 http://dx.doi.org/10.1016/j.biomaterials.2003.12.023
|
[4]
|
Ghanaati, S., Barbeck, M., Orth, C., Willershausen, I., Thimm, B.W., et al. (2010) Influence of β-Tricalcium Phosphate Granule Size and Morphology on Tissue Reaction in Vivo. Acta Biomaterialia, 6, 4476-4487.
|
[5]
|
Dorozhkin, S.V. (2012) Biphasic, Triphasic and Multiphasic Calcium Orthophosphates. Acta Biomaterialia, 8, 963-977.
http://dx.doi.org/10.1016/j.actbio.2011.09.003.
|
[6]
|
Ghanaati, S., Barbeck, M., Orth, C. andWillershausen, I., et al. (2010) Influence of β-Tricalcium Phosphate Granule Size and Morphology on Tissuereaction in Vivo. Acta Biomaterialia, 6, 4476-4487.
http://dx.doi.org/10.1016/j.actbio.2010.07.006.
|
[7]
|
Ginebra, M.P., Canal, C., Espanol, M., Pastorino, D. and E.B. Montufar, (2012) Calcium Phosphate Cements as Drug Delivery Materials. Advanced Drug Delivery Reviews, 64, 1090-1110 http://dx.doi.org/10.1016/j.addr.2012.01.008
|
[8]
|
Ginebra, M.P., Traykova, T. and Planell, J.A. (2006) Calcium Phosphate Cements as Bone Drug Delivery Systems: A Review. Journal of Controlled Release, 113, 102-110. http://dx.doi.org/10.1016/j.jconrel.2006.04.007
|
[9]
|
Arar, H.H. and Bajpai, P.K. (1992) Insulin Delivery by Zinc Calcium Phosphate Ceramics. Biomedical Sciences Instrumentation, 28, 173-178.
|
[10]
|
Velard, F. Braux, J. and Amedee, J. (2013) Patrice Laquerriere Inflammatory Cell Response to Calcium Phosphate Biomaterial Particles: An Overview. Acta Biomaterialia, 9, 4956-4963. http://dx.doi.org/10.1016/j.actbio.2012.09.035
|
[11]
|
Copatti, C., Daiara F.S, Correa, P. and Camargo, N.H.A. (2012) Elaboração e caracterização de biomaterial nano-estruturado granulado bifásico ha/tcp-b para aplicaçães no tratamento da estrutura óssea.
http://www.cbecimat.com.br/trabalhos-completos-cbecimat.php.
|
[12]
|
Josse, S., Faucheux, C., Soueidan, A., et al. (2005) Novel Biomaterials for Bisphosphonate Delivery. Biomaterials, 26, 2073-2080.
|
[13]
|
Busse, B., Jobke, B., Hahn, M., Priemel, M., Niecke, M., Seitz, S., Zustin, J., Semler, J. and Amling, M. (2010) Effects of Strontium Ranelate Administration on Bisphosphonate-Altered Hydroxyapatite: Matrix Incorporation of Strontium Is Accompanied by Changes in Mineralization and Microstructure. Acta Biomaterialia, 6, 4513-4521.
http://dx.doi.org/10.1016/j.actbio.2010.07.019
|
[14]
|
Camargo, N.H.A., de Lima, S. A. and Gemelli, E. (2012) Synthesis and Characterization of Hydroxyapatite/TiO2n Nanocomposites for Bone Tissue Regeneration. American Journal of Biomedical Engineering, 2, 41-47,
|
[15]
|
Luís Fernando Pereira: Elaboração e Caracterização de Biomateriais Nanocompósitos Granulados: universidade do estado de santa catarina, udesc centro de ciências tecnológicas, cct curso de engenharia mecanica: trabalho de conclus o de curso.
|
[16]
|
Ginebra, M.P., Espanol, M., Montufar, E.B., Perez, R.A. and Mestres G. (2010) New Processing Approaches in Calcium Phosphate Cements and Their Applications in Regenerative Medicine. Acta Biomaterialia, 6, 2863-2873.
http://dx.doi.org/10.1016/j.actbio.2010.01.036
|
[17]
|
Kojima, C., Suehiro, T., Watanabe, K., Ogawa, M., Fukuhara, A., Nishisaka, E., Harada, A., Kono, K., Inui, T. and Magata, Y. (2013) Doxorubicin-Conjugated Dendrimer/Collagen Hybrid Gels for Metastasis-Associated Drug Delivery Systems. Acta Biomaterialia, 9, 5673-5680. http://dx.doi.org/10.1016/j.actbio.2012.11.013
|
[18]
|
D’Este, M. and Eglin, D. (2013) Hydrogels in Calcium Phosphate Moldable and Injectable Boné Substitutes: Sticky Excipients or Advanced 3-D Carriers? Acta Biomaterialia, 9, 5421-5430.
http://dx.doi.org/10.1016/j.actbio.2012.11.022
|
[19]
|
Mahkam, M., Hosseinzadeh, F. and Galehassadi, M. (2012) Prep-aration of Ionic Liquid Functionalized Silica Nanoparticles for Oral Drug Delvery. Jornal of Biomaterials and Nanobi-otechenology, 3, 391-395
|
[20]
|
Mahkam, M., Hosseinzadeh, F. and Galehassadi, M. (2012) Preparation of Ionic Liquid Functionalized Silica Nanoparticles for Oral Drug Delvery. Journal of Biomaterials and Nanobiotechenology, 3, 391-395.
http://dx.doi.org/10.1016/j.ijpharm.2009.10.018
|
[21]
|
Mora-Huertas, C.E., Fessi, H. and Elaissari, A. (2010) Polymer-Based Nanocapsules for Drug Delivery. International Journal of Pharmaceutics, 385, 113-142. http://dx.doi.org/10.1016/j.ijpharm.2009.10.018
|
[22]
|
Bianco, A., Kostarelos, K. and Prato, M. (2005) Applications of Carbon Nanotubes in Drug Delivery. Current Opinion in Chemical Biology, 9, 674-679.
|
[23]
|
Wamocha, H.L., Misak, H.E., Song, Z., Chu, H.Y., Chen, Y.Y., Asmatulu, R., Yang, S.-Y. and Ho, J.C. (2013) Cytotoxicity of Release Products from Magnetic Nanocomposites in Targeted Drug Delivery. Journal of Biomaterials Applications, 27, 661.
|
[24]
|
Friend, D.R. (1991) Colon-Specific Drug Delivery. Advanced Drug Delivery Reviews, 7, 149-199.
|
[25]
|
Dalmônico, G.M.L. (2011) Síntese e caracterização de fosfato de cálcio e de hidroxiapatita: Elaboração de composiçães bifásicas HA/TCP-para aplicaçães biomédicas. Dissertação de mestrado em Ciência e Engenharia de Materiais, Universidade do Estado de Santa Catarina, Joinville-SC, 95.
|
[26]
|
De Lima, S., Souza, J., Camargo, N., Pupio, F., Santos, R. and Gemelli, E. (2008) Síntese e Caracterização de Pós Nanoestruturados de Hidroxiapatita. 5 Congresso Latino Americano de 2008órgãos Artificiais e Biomateriais, COLAOB’ 2008, Ouro Preto, 1-6.
|