Electrical Properties and Phase Behavior of Proton Conducting Nanocomposites Based on the Polymer System (1 - x)[PVOH + H3PO2 + H2O]·x(Nb2O5)


In the present work, novel blend polymer electrolyte membranes using poly(vinyl alcohol) (PVA), doped with hypophosphorous acid (H3PO2) and reinforced with porous niobium oxide (Nb2O5) microparticles in different compositions were prepared by the solution-casting technique. Their phase behavior and ionic conductivity were studied by differential scanning calorimetric (DSC), thermogravimetric analysis (TGA) and impedance spectroscopy (IS) in the radio-frequency range. Using a constant H3PO2/PVA weigh ratio of 0.25, it was found that the water content in the blended hydrogel membranes increased with increasing the filler Nb2O5 content, thus increasing the electrical conductivity. However, the suitable weight ratio of Nb2O5:(H3PO2/PVA) for the blend performance (both mechanically and electrically) was x = 0.075, with a maximum ionic conductivity of 2.7 × 10﹣3 S·cm﹣1 at 120°C. For all blends prepared, the lost tangent plots show asymmetrical peaks, as a consequence of correlations in the mobile ion diffusion as a function of frequency. Although this “universal dynamic response” was observed at all temperatures, variations in the tan(δ) relaxation peaks indicate a decrease of ionic correlation when the temperature is increased. Both the dc conductivity and tan(δ) peaks frequency dependency are thermally activated, following an Arrhenius-type behavior with activation energy of the same order, indicating that the corresponding ionic processes have the same origin, i.e., proton jump among available sites in the polymer matrix. The additions of oxide particles to the membranes improve their thermal and electrical properties, attributed to an approximation effect.

Share and Cite:

Mazuera, A. and Vargas, R. (2014) Electrical Properties and Phase Behavior of Proton Conducting Nanocomposites Based on the Polymer System (1 - x)[PVOH + H3PO2 + H2O]·x(Nb2O5). American Journal of Analytical Chemistry, 5, 301-307. doi: 10.4236/ajac.2014.55037.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Avellaneda, C.O., Alkahlout, A., Pawlicka, A., Leite, E.R. and Aegerter A. (2006) Solid State Electrochromic Devices with Nb2O5 Thin Film and Gelatin-Based Electrolyte. The 10th International Symposium on Polymer Electrolytes, Foz do Iguaçú, 15-19 October 2006, 22.
[2] De Carvalho, L.M., Tan, A.R., Da Costa, E.T. and De Souza, A. (2006) Nanostrutured Hybrid Materials for Fuel Cell Application. The 10th International Symposium on Polymer Electrolytes, Foz do Iguaçú, 15-19 October 2006, 33.
[3] Siracusano, S., Vaglio, B., Lufrano, F., Staiti, P. and Aricó, A.S. (2013) Electrochemical Characterization of a PEM Water Electrolyzer Based on a Sulfonated Polysulfone Membrane. Journal of Membrane Science, 448, 209-214.
[4] Gao, H., Tian, O. and Lian, K. (2010) Polyvinyl Alcohol-Heteropoly Acidpolymer Electrolytes and Their Applications in Electrochemical Capacitors. Solid State Ionics, 181, 874-876.
[5] Mazuera, A.M. and Vargas, R.A. (2012) Estudio del comportamiento térmico y eléctrico en nanocompositas poliméricas basadas en óxidos de nióbio micrométrico con poli(alcohol de vinilo), con composición (1 - x) [PVOH + H3PO2 + H2O]·x(Nb2O5). Bachelor Thesis, Universidad del Valle, Colombia.
[6] Gonzáles, Y.F. and Vargas, R.A. (2011) Estudio de las propiedades termodinámicas y eléctricas demateriales compuestos poliméricos basados enelpoli(vinilalcohol) (PVA) + H3PO2+ TiO2. Revista Iberoamerica dePolimeros, 12, 64-75.
[7] Martinelli, A., Fernicola, A., Matic, A., et al. (2006) Ionic Liquid Based Proton Conducting Membranes. The 10th International Symposium on Polymer Electrolytes, Foz do Iguaçú, 15-19 October 2006, 3.
[8] Umeda, J., Mariya, M., Sakomoto, W. and Yogo, T. (2009) Synthesis of Proton Conductive Membranes Based on Inorganic-Organic Hybridstructure Bound with Phosphonic Acid. Electrochemical Acta, 55, 298.
[9] Vargas, R.A., Delgado, M.I. and Palacios, I. (2004) Effect of Water Vapor on the Ion Transport in Polymer Films of PVOH/LiH2PO4 /H2O. Solid State Ionics, 175\1-4, 729-732.
[10] Zapata, V.H., Castro, W.A. and Vargas, R.A. (2011) Conductividad y relajación eléctrica en compositas poliméricasde PVOH + LiH2PO4 + Al2O3 analizadas mediante ajuste a losmodelos VTF, KWW y la ley de potencias de Jonscher. Revista Colombiana de física, 43, 1-5.
[11] Qiao, J., Okada, T. and Ono, H. (2009) High Molecular Weight PVA Modified PVA/PAMPS Proton Conducting Membranes with Increased Stability and Their Application in DMFCs. Solid State Ionics, 180, 1318-1323.
[12] Zapata, V.H., Castro, W.A. and Vargas, R.A. (2008) Estudios de Conductividad y Relajación Eléctrica en el Sistema Polimérico PVOH + LIH2PO4 + H2O. Revista Colombiana de física, 40, 611-614.
[13] Wang, X., Yucel, T., Lu, Q., Hu, X. and Kaplan, D.L. (2010) Silk Nanospheres and Microspheres from Silk/PVA Blend Films for Drug Delivery. Biomaterials, 31, 1025-1035.
[14] Castro, W.A., Zapata, V.H. and Vargas, R.A. (2006) Estudios de transporte iónico y equilibrio de fases en compositas poliméricas., Revista Colombiana de física, 38, 1491-1494.
[15] Zhang, W., Zhang, Z. and Wang, X. (2009) Investigation on Surface Molecular Conformations and Pre-Evaporation Performance of Thepoly(vinyl Alcohol) (PVA) Membrane. Journal Colloid Interface Science, 333, 346-353.
[16] Ye, H., Huang, J., Xung, J.J., et al. (2008) New Membranes Based on Ionic Liquids for PEM Fuel Cells at Elevated Temperatures. Journal of Power Sources, 178, 651-660.
[17] Baschuk, J.J. and Li, X. (2010) Modeling of Ion and Water Transport in the Polymer Electrolytemembrane of PEM Fuel Cells. International Journal of Hydrogen Energy, 35, 5095-5103.
[18] Castro, W.A., Zapata, V.H. and Vargas, R.A. (2013) Electrical Conductivity Relaxation in PVOH-LiClO4-Al2O3. Ionics, 19, 83-89.
[19] Mohan, V.M., Qiu, W., Shen, J. and Chen, W. (2009) Electrical Properties of Poly(vinyl alcohol) (PVA) Based on LiFePO4 Complex Polymer Electrolyte Films. Journal of Polymer Research, 17, 143-150.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.