[1]
|
A. P. Stakhov, “The Mathematics of Harmony. From Euclid to Contemporary Mathematics and Computer Science,” World Scientific, New Jersey, 2009.
|
[2]
|
A. P. Stakhov and B. N. Rozin, “On a New Class of Hyperbolic Function,” Chaos, Solitons & Fractals, Vol. 23, No. 2, 2004, pp. 379-389. doi:10.1016/j.chaos.2004.04.022
|
[3]
|
A. P. Stakhov, “Gazale Formulas, a New Class of the Hyperbolic Fibonacci and Lucas Functions, and the Improved Method of the ‘Golden’ Cryptography,” 2006. http://www.trinitas.ru/rus/doc/0232/004a/02321063.htm
|
[4]
|
V. W. de Spinadel, “From the Golden Mean to Chaos,” 2nd Edition, Nueva Libreria, Nobuko, 2004.
|
[5]
|
S. Kh. Aranson, “Qualitative Properties of Foliations on Closed Surfaces,” Journal of Dynamical and Control Systems, Vol. 6, No. 1, 2000, pp. 127-157. doi:10.1023/A:1009525823422
|
[6]
|
S. Kh. Aranson, V. Z. Grines and E. V. Zhuzhoma, “Using Lobachevsky Plane to Study Surface Flows, Foliations and 2-Webs,” Proceedings of the International Conference BGL-4 (Bolyai-Gauss-Lobachevsky). Non-Euclidean Geometry in Modern Physics and Mathematics, Nizhny Novgorod, 7-11 September 2004, pp. 8-24.
|
[7]
|
S. Kh. Aranson and E. V. Zhuzoma, “Nonlocal Properties of Analytic Flows on Closed Orientable Surfaces,” Proceedings of the Steklov Institute of Mathematics, Vol. 244, 2004, pp. 2-17.
|
[8]
|
S. Kh. Aranson, G. R. Belitsky and E. V. Zhuzhoma, “Introduction to the Qualitative Theory of Dynamical Systems on Surfaces,” American Mathematical Society, Providence, 1996.
|
[9]
|
D. V. Anosov, S. K. Aranson, V. I. Arnold, I. U. Bronshtein, V. Z. Grines and Yu. S. Il’yashenko, “Ordinary Differential Equations and Smooth Dynamical Systems,” Springer, Berlin, 1997.
|
[10]
|
D. V. Anosov, S. Kh. Aranson, et al., “Dynamical Sys- tems IX. Dynamical Systems with Hyperbolic Behaviour,” Springer, Berlin, 1995.
|
[11]
|
P. S. Aleksandrov, “Hilbert Problems,” Nauka, Moscow, 1969.
|
[12]
|
S. Kh. Aranson, “Once Again on Hilbert’s Fourth Problem,” Academy of Trinitarism, Moskow, 1 December 2009. http://www.trinitas.ru/rus/doc/0232/009a/02321180.htm
|
[13]
|
H. Busemann, “On Hilbert’s Fourth Problem,” Uspechi mathematicheskich Nauk, Vol. 21, No. 1, 1966, pp. 155-164.
|
[14]
|
A. V. Pogorelov, “Hilbert’s Fourth Problem,” Nauka, Moscow, 1974.
|
[15]
|
A. P. Stakhov and I. S. Tkachenko, “Hyperbolic Fibonacci Trigonometry,” Reports of the National Academy of Sciences of Ukraine, Vol. 208, No. 7, 1993, pp. 9-14.
|
[16]
|
Y. Bodnar, “The Golden Section and Non-Euclidean Geometry in Nature and Art,” Publishing House, Lvov, 1994.
|
[17]
|
A. P. Stakhov and S. K. Aranson, “Golden Fibonacci Goniometry, Fibonacci-Lorentz Transformations, Hilbert’s Fourth Problem,” Congressus Numerantium, Vol. 193, 2008, pp. 119-156.
|
[18]
|
B. A. Dubrovin, S. P. Novikov and A. T. Fomenko, “Modern Geometry. Methods and Applications,” Nauka, Moscow, 1979.
|