[1]
|
Baroody, A. J., & Gannon, K. E. (1984). The development of the commutativity principle and economical addition strategies. Cognition and Instruction, 1, 321-339. http://dx.doi.org/10.1207/s1532690xci0103_3
|
[2]
|
Baroody, A. J., Ginsburg, H. P., & Waxman, B. (1983). Children’s use of mathematical structure. Journal for Research in Mathematics Education, 14, 156-168. http://dx.doi.org/10.2307/748379
|
[3]
|
Canobi, K. H., Reeve, R. A., & Pattison, P. E. (2002). Young children’s understanding of addition concepts. Educational Psychology, 22, 513-532. http://dx.doi.org/10.1080/0144341022000023608
|
[4]
|
Canobi, K. H., Reeve, R. A., & Pattison, P. E. (2003). Patterns of knowledge in children’s addition. Developmental Psychology, 39, 521-534. http://dx.doi.org/10.1037/0012-1649.39.3.521
|
[5]
|
Cowan, R., & Renton, M. (1996). Do they know what they are doing? Children’s use of economical addition strategies and knowledge of commutativity. Educational Psychology, 16, 407-420. http://dx.doi.org/10.1080/0144341960160405
|
[6]
|
Dubé, A. K., & Robinson, K. M. (2010). The relationship between adults’ conceptual understanding of inversion and associativity. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 64, 60-66. http://dx.doi.org/10.1037/a0017756
|
[7]
|
Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43-74. http://dx.doi.org/10.1016/0010-0277(92)90050-R
|
[8]
|
Gaschler, R., Vaterrodt, B., Frensch, P. A., Eichler, A., & Haider, H. (2013). Spontaneous usage of different shortcuts based on the commutativity principle. PLoS ONE, 8, Article ID: e74972. http://dx.doi.org/10.1371/journal.pone.0074972
|
[9]
|
Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2007). Symbolic arithmetic knowledge without instruction. Nature, 447, 589-591. http://dx.doi.org/10.1038/nature05850
|
[10]
|
Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and achievement in the first year of formal schooling in mathematics. Cognition, 115, 394-406. http://dx.doi.org/10.1016/j.cognition.2010.02.002
|
[11]
|
Godau, C., Haider, H., Hansen, S., Vaterrodt, B., Schubert, T., Frensch, P. A., & Gaschler, R. (2013). Increasing the usage of an arithmetic shortcut by offering an easy-to-find shortcut based on the same mathematical principle. Manuscript submitted for publication.
|
[12]
|
Haider, H., & Frensch, P. A. (1999). Eye movement during skill acquisition: More evidence for the information-reduction hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 172-190. http://dx.doi.org/10.1037/0278-7393.25.1.172
|
[13]
|
Hansen, S., Haider, H., Eichler, A., Gaschler, R., Godau, C., & Frensch, P. A. (2013). Fostering formal commutativity knowledge with approximate arithmetic. Manuscript submitted for publication.
|
[14]
|
Madsen, A., Rouinfar, A., Larson, A. M., Loschky, L. C., & Rebello, N. S. (2013). Can short duration visual cues influence students’ reasoning and eye movements in physics problems? Physical Review Special Topics—Physics Education Research, 9, Article ID: 020104. http://dx.doi.org/10.1103/PhysRevSTPER.9.020104
|
[15]
|
Obersteiner, A., Reiss, K., & Ufer, S. (2013). How training on exact or approximate mental representations of number can enhance first-grade students’ basic number processing and arithmetic skills. Learning and Instruction, 23, 125-135. http://dx.doi.org/10.1016/j.learninstruc.2012.08.004
|
[16]
|
Resnick, L. B. (1992). From protoquantities to operators: Building mathematical competence on a foundation of everyday knowledge. In G. Leinhardt, R. Putnam, & R. A. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching. Hillsdale, NJ: L. Erlbaum Associates.
|
[17]
|
Robinson, K. M., & Dubé, A. K. (2012). Children’s use of arithmetic shortcuts: The role of attitudes in strategy choice. Child Development Research, 2012, 10. http://dx.doi.org/10.1155/2012/459385
|
[18]
|
Sherman, J., & Bisanz, J. (2009). Equivalence in symbolic and nonsymbolic contexts: Benefits of solving problems with manipulatives. Journal of Educational Psychology, 101, 88-100. http://dx.doi.org/10.1037/a0013156
|
[19]
|
Siegler, R. S., & Jenkins, E. (1989). How children discover new strategies (Vol. xiv). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
|
[20]
|
Siegler, R. S., & Stern, E. (1998). Conscious and unconscious strategy discoveries: A microgenetic analysis. Journal of Experimental Psychology: General, 127, 377-397. http://dx.doi.org/10.1037/0096-3445.127.4.377
|
[21]
|
Sophian, C., Harley, H., & Martin, C. S. M. (1995). Relational and representational aspects of early number development. Cognition and Instruction, 13, 253-268. http://dx.doi.org/10.1207/s1532690xci1302_4
|
[22]
|
Thomas, L. E., & Lleras, A. (2007). Moving eyes and moving thought: On the spatial compatibility between eye movements and cognition. Psychonomic Bulletin & Review, 14, 663-668. http://dx.doi.org/10.3758/BF03196818
|
[23]
|
Verschaffel, L., Luwel, K., Torbeyns, J., & Dooren, W. V. (2009). Conceptualizing, investigating, and enhancing adaptive expertise in elementary mathematics education. European Journal of Psychology of Education, 24, 335-359. http://dx.doi.org/10.1007/BF03174765
|
[24]
|
Wilkins, J. L., Baroody, A. J., & Tiilikainen, S. (2001). Kindergartners’ understanding of additive commutativity within the context of word problems. Journal of Experimental Child Psychology, 79, 23-36. http://dx.doi.org/10.1006/jecp.2000.2580
|