Battery Modeling: A Versatile Tool to Design Advanced Battery Management Systems

Abstract

Fundamental physical and (electro) chemical principles of rechargeable battery operation form the basis of the electronic network models developed for Nickel-based aqueous battery systems, including Nickel Metal Hydride (NiMH), and non-aqueous battery systems, such as the well-known Li-ion. Refined equivalent network circuits for both systems represent the main contribution of this paper. These electronic network models describe the behavior of batteries during normal operation and during over (dis) charging in the case of the aqueous battery systems. This makes it possible to visualize the various reaction pathways, including convention and pulse (dis) charge behavior and for example, the self-discharge performance.

Share and Cite:

Notten, P. and Danilov, D. (2014) Battery Modeling: A Versatile Tool to Design Advanced Battery Management Systems. Advances in Chemical Engineering and Science, 4, 62-72. doi: 10.4236/aces.2014.41009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Armand and J.-M. Tarascon, “Building Better Batteries,” Nature, Vol. 451, 2008, pp. 652-657.
http://dx.doi.org/10.1038/451652a
[2] P. H. L. Notten, F. Roozeboom, R. A. H. Niessen and L. Baggetto, “3-D Integrated All-Solid-State Rechargeable Batteries,” Advanced Materials, Vol. 19, No. 24, 2007, pp. 4564-4567.
http://dx.doi.org/10.1002/adma.200702398
[3] A. Ledovskikh, D. Danilov, W. J. J. Rey and P. H. L. Notten, “Modeling of Hydrogen Storage in Hydride-Forming Materials: Statistical Thermodynamics,” Physical Review B, Vol. 73, Article ID: 014106.
http://dx.doi.org/10.1103/PhysRevB.73.014106
[4] P. H. L. Notten, W. S. Kruijt and H. J. Bergveld, “Electronic Network Modeling of Rechargeable Batteries II. The NiCd System,” Journal of The Electrochemical Society, Vol. 145, No. 11, 1998, pp. 3774-3783.
http://dx.doi.org/10.1103/PhysRevB.73.014106
[5] A. Ayeb, W. M. Otten, A. J. G. Mank and P. H. L. Notten, “The Hydrogen Evolution and Oxidation Kinetics during Overdischarging of Sealed Nickel-Metal Hydride Batteries,” Journal of The Electrochemical Society, Vol. 153, No. 11, 2006, pp. A2055-A2065.
http://dx.doi.org/10.1149/1.2336993
[6] A. Ayeb and P. H. L. Notten, “The Oxygen Evolution Kinetics in Sealed Rechargeable NiMH Batteries,” Electrochimica Acta, Vol. 53, No. 19, 2008, pp. 5836-5847.
http://dx.doi.org/10.1016/j.electacta.2008.03.023
[7] H. J. Bergveld, W. S. Kruijt and P. H. L. Notten, “Electronic-Network Modelling of Rechargeable NiCd Cells and Its Application to the Design of Battery Management Systems,” Journal of Power Sources, Vol. 77, No. 2, 1999, pp. 143-158.
http://dx.doi.org/10.1016/S0378-7753(98)00188-8
[8] H. J. Bergveld, W. S. Kruijt and P. H. L. Notten, “Battery Management Systems—Design by Modeling,” Vol. 1, Kluwer Academic Publishers, Boston, 2002.
http://dx.doi.org/10.1007/978-94-017-0843-2
[9] D. Danilov and P. H. L. Notten, “Adaptive Battery Management Systems for the New Generation of Electrical Vehicles,” IEEE Vehicle Power and Propulsion Conference, Dearborn, 7-10 September 2009, pp. 317-320.
[10] A. Ledovskikh, E. Verbitski, A. Ayeb and P. H. L. Notten, “Modelling of Rechargeable NiMH Batteries,” Journal of Alloys and Compounds, Vol. 356-357, 2003, pp. 742-745.
http://dx.doi.org/10.1016/S0925-8388(03)00082-3
[11] D. Danilov, R. Niessen and P. H. L. Notten, “Modeling All-Solid-State Li-Ion Batteries,” Journal of the Electrochemical Society, Vol. 158, No. 3, 2011, pp. A215-A222.
http://dx.doi.org/10.1149/1.3521414
[12] D. Danilov and P. H. L. Notten, “Mathematical Modelling of Ionic Transport in the Electrolyte of Li-Ion Batteries,” Electrochimica Acta, Vol. 53, No. 17, 2008, pp. 5569-5578.
http://dx.doi.org/10.1016/j.electacta.2008.02.086
[13] V. Pop, H. J. Bergveld, D. Danilov, P. P. L. Regtien and P. H. L. Notten, “Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications,” Springer, Dordrecht, 2008.
[14] D. Danilov and P. H. L. Notten, “Ageing of Li-Ion Batteries: Mathematical Description,” 2007th ECS Meetings, Quebeck, 15-20 May 2005.
[15] D. Danilov and P. H. L. Notten, “Theory and Simulation of Lithium-Ion Batteries: From Single Cycle Performance to Long-Term Aging Effects,” The 13th European Conference on Mathematics for Industry, Eindhoven, 21-25 June 2004.
[16] D. Danilov and P. H. L. Notten, “Variable-Rate Capacity Degradation Model for Li-Ion Batteries,” XII International Workshop on Lithium Batteries, Nara, 2004.
[17] V. Pop, H. J. Bergveld, P. P. L. Regtien, J. H. G. Op het Veld, D. Danilov and P. H. L. Notten, “Battery Aging and Its Influence on the Electromotive Force,” Journal of The Electrochemical Society, Vol. 154, No. 8, 2007, pp. A744-A750. http://dx.doi.org/10.1149/1.2742296
[18] P. H. L. Notten, D. Danilov and B. Op het Veld, “Adaptive Battery Modelling: A Challenging Route towards Sophisticated Battery Management Systems,” IMLB 2006 —International Meeting on Lithium Batteries, Biarritz, 19-23 June 2006.
[19] P. H. L. Notten, J. H. G. Op het Veld and J. R. G. van Beek, “Boostcharging Li-Ion Batteries: A Challenging New Charging Concept,” Journal of Power Sources, Vol. 145, No. 1, 2005, pp. 89-94.
http://dx.doi.org/10.1016/j.jpowsour.2004.12.038

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.