[1]
|
Agresti, A. (2002). Categorical data analysis (2nd ed.). Boboken, NJ: John Wiley & Sons.
|
[2]
|
Agresti, A., & Finlay, B. (1986). Statistical method for the social sciences (2nd, ed.). San Francisco, CA: Dellen.
|
[3]
|
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov, & F. Csaki (Eds.), Second international symposium on information theory (pp. 267-281). Budapest: AcademiaiKiado.
|
[4]
|
Altman, D. G., & Andersen, P. K. (1989). Bootstrap investigation of the stability of a Coxregression model. Statistics in Medicine, 8, 771-783.
|
[5]
|
Bernstein, I. H. (1989). Applied multivariate analysis. New York: Springer-Verlag.
|
[6]
|
Bondell, H. D., & Reich, B. J. (2008). Simultaneous regression shrinkage, variable selectionand clustering of predictors with OSCAR. Biometrics, 64, 115-123.
|
[7]
|
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multipleregression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Lawrence Erlbaum.
|
[8]
|
Derksen, S., & Keselman, H. J. (1992). Backward, forward and stepwise automated subset selection algorithms. British Journal of Mathematical and Statistical Psychology, 45, 265-282.
|
[9]
|
Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of Statistics, 32, 407-489.
|
[10]
|
Fan, J., & Li, R. (2001). Variable selection vianonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96, 1348-1360.
|
[11]
|
Foster, D. P., & George, E. I. (1994). The risk inflation criterion for multiple regression. The Annals of Statistics, 22, 1947-1975.
|
[12]
|
George, E. I., & McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88, 881-889.
|
[13]
|
Gilks, W. R., Wang, C. C, Yvonnet, B., & Coursaget, P. (1993). Random effects models for longitudinal data using Gibbs sampling. Biometrics, 49, 441-453.
|
[14]
|
Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression. New York: John Wiley& Sons.
|
[15]
|
Laird, N., & Ware, J. H. (1982). Random effect models for longitudinal data. Biometrics, 38, 963-974.
|
[16]
|
Mallows, C. L. (1973). Some comments on Cp. Technometrics, 15, 611-675.
|
[17]
|
Meier, L., van de Geer, S., & Buhlmann, P. (2008). The group lasso for logistic regression. Journal of Royal Statistical Society, B, 70, 53-71.
|
[18]
|
Menard, S. (1995). Applied logistic regression analysis (Sage university paper series on quantitative application in the social sciences, series no. 106) (2nd ed.). ThousandOaks, CA: Sage.
|
[19]
|
O’Hara, R. B., & Sillanpaaa, M. J. (2009). A review of Bayesian variable selection methods: what, how and which. Bayesian Analysis, 4, 85-118.
|
[20]
|
Orelien.,& Edwards, L. J. (2008). Fixed effect variable selection in linear mixed models using statistics. Computational Statistics & Data Analysis, 52, 1896-1907.
|
[21]
|
R Development Core Team. (2013). R: A language environment for statistical computing. Vienna, Austria: The R foundation for statistical computing. http://www.R-project.org/
|
[22]
|
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461-464.
|
[23]
|
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of Royal Statistical Society, B, 58, 267-288.
|
[24]
|
Vonesh, E. F., & Chinchilli, V. M. (1997). Linear and Nonlinear models for the analysis of repeated measurement. New York: Marcel Dekker.
|
[25]
|
Vonesh, E. F., Chinchilli, V. M., & Pu, K. W. (1996).Goodness-of-fit in generalized nonlinear mixed-effects model. Biometrics, 52, 572-587.
|
[26]
|
Yuan, M., & Lin, Y. (2006).The composite absolute penalties family for grouped and hierarchical variable selection. Journal of the Royal Statistical Society, B, 68, 49-67.
|
[27]
|
Zhang, H. H. Wahba, G., Lin, Y., Voelker, M., Ferris, M., Klein, R., & Klein, B. (2004). Variable selection and model building via like lihood basis pursuit. Journal of the American Statistical Association, 99, 659-672.
|
[28]
|
Zheng, B. Y. (2000). Summarizing the goodness of fit of generalized linear models for longitudinal data. Statistics in Medicine, 19, 1265-1275.
|