Symptomatic improvement in an acute, non-traumatic spine pain model with a combination of uridine triphosphate, cytidine monophosphate, and hydroxocobalamin

Abstract

Rationale: In a previously published trial on spinal acute non-traumatic pain, peripheral neuro- regenerative combination of UTP, CMP and hydroxocobalamin presented unexpected analgesicproperties. Objective: To corroborate analgesiceffects of UTP, CMP and hydroxocobalamin combination in a self-paired evolutionary model. Methods: Mean VAS scores from pretreatment, V2 (5th treatment day) and V3 (10th treatment day) were plotted and statistically analyzed (ANOVA) for differences. PFQ scores from pretreatment, V2, and V3 were analyzed using the chisquare test. Results: The difference between V3 and pretreatment mean VAS scores was statistically significant (p < 0.0001). The improvement in PFQ scores throughout the study was found to be statistically significant (p < 0.0001). Conclusion: The combination of UTP, CMP and hydroxocobalamin seems to have analgesic properties in mediumterm use. The complex peripheral neu-roregenerative pharmacodynamics of this combination provides a plausible basis for this finding. Further randomized studies are needed to explore this combination for the indication of neuropathic pain due to spinal structure involvement.

Share and Cite:

Antonio Mibielli, M. , Pereira Nunes, C. , Scussel Jr., A. , Suchmacher Neto, M. , Oliveira, L. and Geller, M. (2014) Symptomatic improvement in an acute, non-traumatic spine pain model with a combination of uridine triphosphate, cytidine monophosphate, and hydroxocobalamin. Pain Studies and Treatment, 2, 6-10. doi: 10.4236/pst.2014.21002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Mibielli, M.A., Nunes, C.P., Cohen, J.C., Júnior, A.B.S., Higashi, R., Bendavit, G.G., Oliveira, L. and Geller, M. (2010) Treament of acute, non-traumatic pain using a combination of diclofenac-cholestyramine, uridine triphosphate, cytidine monophosphate, and hydroxocobalamin. Proceedings of the Western Pharmacology Society, 53, 5- 12.
[2] Wattig, B., Schalow, G., Heydenreich, F., Warzok, R. and Cervós-Navarro, J. (1992) Enhancement of nerve fibre regeneration by nucleotides after peripheral nerve crush damage. Electrophysiologic and morphometric investigations. Arzneimittelforschung, 42, 1075-1078.
[3] Wattig, B., Schalow, G., Madauss, M., Heydenreich, F., Warzok, R. and Cervós-Navarro, J. (1992) Acceleration of nerve and muscle regeneration by administration of nu- cleotides—Electroneurophysiological and morphometrical investigations. Acta Histochemica, 42, 333-339.
[4] Wattig, B., Schalow, G., Madauss, M., Heydenreich, F., Warzok, R. and Cervós-Navarro, J. (1991) Acceleration of muscle regeneration by nucleotide administration. Experimental morphometric studies. Zentralbl Pathol, 137, 409-413.
[5] Wattig, B., Schalow, G., Heydenreich, F., Schalow, G., Radzewitz, B., Warzok, R. and Cervós-Navarro, J. (1991) Nucleotide beschleunigen die nervenregeneration (tradu??o: Nucleotídeos aceleram a regenera??o neural). Z Klin Med, 46, 1371-1373.
[6] Pooler, A.M., Guez, D.H., Benedictus, R. and Wurtman, R.J. (2005) Uridine enhances neurite outgrowth in nerve growth factor-differentiated pheochromocytoma cells. Neuroscience, 134, 207-214. http://dx.doi.org/10.1016/j.neuroscience.2005.03.050
[7] Neary, J.T., Rathbone, M.P., Cattabeni, F., Abbracchio, M.P. and Burnstock, G. (1996) Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends in Neuroscience, 19, 13-18. http://dx.doi.org/10.1016/0166-2236(96)81861-3
[8] Silei, V., Politi, V. and Lauro, G.M. (2000) Uridine induces differentiation in human neuroblastoma cells via protein kinase C epsilon. Journal of Neuroscience Re- search, 61, 206-211. http://dx.doi.org/10.1002/1097-4547(20000715)61:2<206::AID-JNR11>3.0.CO;2-B
[9] Connolly, G.P. and Duley, J.A. (1999) Uridine and its nucleotides: Biological actions, therapeutic potentials. Trends in Pharmacology Sciences, l, 218-225. http://dx.doi.org/10.1016/S0165-6147(99)01298-5
[10] Webb, T.E. and Barnard, E.A. (1999) Molecular biology of P2Y receptors expressed in the nervous system. Progress in Brain Research, 120, 23-31. http://dx.doi.org/10.1016/S0079-6123(08)63543-8
[11] Hussl, S. and Boehm, S. (2006) Functions of neuronal P2Y receptors. Pflügers Archiv, 452, 538-551. http://dx.doi.org/10.1007/s00424-006-0063-8
[12] Illes, P. and Zimmerman, H. (1999) Nucleotides and their receptors in the nervous system. Progress in Brain Research, 120.
[13] Guéant, J.-L. (2012) Novel aspects of molecular and cellular effects of vitamin B12. Vitamin B12 Symposium, University of Lorraine, Lorraine.
[14] Scalabrino, G. (2012) Cobalamin and normal prions: New horizons for cobalamin neurobiology. Vitamin B12 Symposium, University of Lorraine, Lorraine.
[15] Cyanocobalamin (2010) Drugdex drug evaluations. Micromedex.
[16] Hendler, S.S. (2008) PDR for nutrional supplements. 2nd edition, Thomson Reuters.
[17] Goodman and Gilman’s (2011) The pharmacological basis of therapeutics. 12th edition, McGraw Hill.
[18] Voet, D., Voet, J.G. and Pratt, C.W. (2002) Fundamentos de bioquímica. Artmed Editora.
[19] Cazaubon, S., Viegas, P. and Couraud, P.O. (2007) Func- tions of prion protein PrPc. Medicine Sciences (Paris), 23, 741-745. http://dx.doi.org/10.1051/medsci/20072389741
[20] McCaddon, A. (2012) Vitamin B12 in neurology and aging: Clinical and genetic aspects. Vitamin B12 Symposium, University of Lorraine, Lorraine.
[21] Goldberg, H., Júnior, A.B.S., Cohen, J.C., Rzetelna, H., Mezitis, S.G.E., Nunes, F.P., Ozeri, D., Daher, J.P.L., Nunes, C.P., Oliveira, L. and Geller, M. (2009) Neural compression-induced neuralgias: Clinical evaluation of the effect of nucleotides associated with vitamin B12. Revista Brasileira de Medicina do Esporte, 66, 380-385.
[22] Geller et al. (2013) Unpublished data.
[23] Okada, M., Nakagawa, T., Minami, M. and Satoh, M. (2002) Analgesic effects of intrathecal administration of P2Y nucleotide receptors agonists UTP and UDP in normal and neuropathic pain model rats. Journal of Pharmacology and Experimental Therapeutics, 303, 66-73. http://dx.doi.org/10.1124/jpet.102.036079
[24] Granados-Soto, V., Sánchez-Ramirez, G., la Torre, M.R., Caram-Salas, N.L., Medina-Santillán, R. and Reyes-Garcia, G. (2004) Effect of diclofenac on the antiallodynic activity of vitamin B12 in a neuropathic pain model in the rat. Proceedings of the Western Pharmacology Society, 47, 92-94.
[25] Mixcoatl-Zecuatl, T., Quinonez-Bastidas, G.N., Caram- Salas, N.L., Ambriz-Tututi, M., Araiza-Saldana, C.I., Ro- cha-Gonzalez, H.I., Medina-Santillan, R., Reyes-Garcia, G. and Granados-Soto, V. (2008) Synergistic antiallodyn- ic interaciton between gabapentin or carbamazepine and either benfotiamine or cyanocobalamin in neuropathic rats. Methods & Findings in Experimental & Clinical Pharmacology, 30, 1-11. http://dx.doi.org/10.1358/mf.2008.30.6.1254247
[26] Wantanabe, T., Kaji, R., Oka, N., Bara, W. and Kimura, J. (1994) Ultra-high dose methylcobalamin promotes nerve regeneration in experimental acrylamide neuropathy. Journal of the Neurological Sciences, 122, 140-143. http://dx.doi.org/10.1016/0022-510X(94)90290-9
[27] Kuwabara, S., Nakazawa, R., Azuma, N., Suzuki, M., Mi- yajima, K., Fukutake, T. and Hattori, T. (1999) Intravenous methylcobalamin treatment for uremic and diabetic neuropathy in chronic hemodialysis patients. Internal Medicine, 38, 472-475. http://dx.doi.org/10.2169/internalmedicine.38.472
[28] Yaqub, B.A., Siddique, A., Sulimani, R. (1992) Effects of methylcobalamin on diabetic neuropathy. Clinical Neurology and Neurosurgery, 94, 105-111. http://dx.doi.org/10.1016/0303-8467(92)90066-C
[29] Devathasan, G., Teo, W.L. and Mylvaganam, A. (1986) Methylcobalamin in chronic diabetic neuropathy. A double- blind clinical and electrophysiological study. Journal of Clinical Trials, 23, 130-140.
[30] Mauro, G.L., Martorana, U., Cataldo, P., Brancato, G. and Letizia, G. (2000) Vitamin B12 in low back pain: A randomised, double-blind, placebo-controlled study. European Review for Medical and Pharmacological Sciences, 4, 53-58.
[31] Pfohl-Leszkowicz, A., Keith, G. and Dirheimer, G. (1991) Effect of cobalamin derivatives on in vitro enzymatic DNA methylation: Methylcobalamin can act as a methyl donor. Biochemistry, 30, 8045-8051. http://dx.doi.org/10.1021/bi00246a024
[32] Takeshige, C., Ando, Y. and Ando, M. (1971) Effects of vitamin B12 and aldosterone on the conduction of sensory and motor nerve impulse. Vitamins (Japan), 44, 272- 282.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.