Common Fixed Points for a Countable Family of Set-Valued Mappings with Quasi-Contractive Conditions on Metrically Convex Spaces ()
1. Introduction
There have appeared many fixed point theorems for a single-valued self map of a closed subset of a Banach space. However, in many applications, the mapping under considerations is not a self-mapping on a closed subset. In 1976, Assad [1] gave sufficient condition for such single valued mapping to obtain a fixed point by proving a fixed point theorem for Kannan mappings on a Banach space and putting certain boundary conditions on the mapping. Similar results for multi-valued mappings were respectively given by Assad [2] and Assad and Kirk [3]. On the other hand, many authors discussed common fixed point problems [4-7] for finite single or multi-valued mappings on a complete 2-metric convex space or a complete cone metric space respectively. And some authors also discussed common fixed point problems [8-13] for a countable family of self-single-valued mappings with contractive or quasi-contractive conditions on a metric space or a metrically convex space respectively. These results improved and generalized many previous works.
In this paper, we will discuss the existent problems of common fixed points for a countable family of surjective set-valued mappings, which satisfy certain quasi-contractive condition, defined on a complete metrically convex space and obtain some important theorems. The main results in this paper further generalize and improve many common fixed point theorems for single valued or multi-valued mappings with quasi-contractive type conditions.
Through this paper, (or) is a metric space. Let denote the families of all bounded closed subset of.
Let, the distance between and.
Definition 1.1. ([8-10]) A metric space is said to be metrically convex, if any with, there exists such that, and.
Lemma 1.1. ([3,8]) If is a nonempty closed subset of a complete metrically convex space, then for any and, there exists which satisfies.
Lemma 1.2. ([13]) If is a complete metric space and, then is continuous on. Moreover, we have :
1);
2) if and only if,;
3) for any,.
2. Main Results
Theorem 2.1. Let be a nonempty closed subset of a complete metrically convex space with, a countable family of surjective set-valued mappings with nonempty values such that for any with, any,
(1)
where and is a constant number.
Furthermore, if for all, and for each and and any, there exists such that, then has a unique common fixed point in.
Proof Take. We will construct two sequences and in the following manner. Since is on-to, there exists such that. If, then put; if, then by Lemma 1.1 there exits such that. For, since is on-to, there exists such that. If, then put; if, then by Lemma 1.1 there exists such that. Continuing this way, we obtain and:
1);
2) if, then put;
3) if, then by Lemma 1.1 there exists such that
4) for all
Let and. If there exists such that, then In fact, By 3) and the definition of, we have that, ,. If, then. On the other hand, since and, hence which is a contradiction. If, then and, hence, so, which is another contradiction.
By the definitions and properties of and, we can estimate into three cases:
Case I.. In this case, , , and. And we have
where
If then
hence
If, then
hence
Therefore, in any situation, we have
Case II. and. In this case, , and and. And we have
where
If then
hence
If, then
hence
Therefore, in any situation, we have
But, hence we obtain
Case III. and. In this case, by the property of and, and, , and. And we have
where
Here, we give two basic properties:
1) since so and hence
2) since
hence
If then
hence by 2),
So by Case II, we obtain
If, then
hence by 2),
So by Case II again, we obtain
Hence in any situation, we have
Therefore, from Case I, Case II and Case III, we obtain
Let, then since, hence we have
so
Let, then for,
as. Hence is a Cauchy sequence. Since is complete, has a limit. But is closed and for all, hence.
By the property of and, we can see that there exists an infinite subsequence of such that, hence and
Next, we will prove that is a common fixed point of. Fix any, for each fixed, there exists such that . Take an enough large such that and. By Lemma 1.2 3) and (1), we have
and
where
If then
Let, then since, hence
. So since, therefore by Lemma 1.2 1).
If, then
Let, then since, hence similarly,
So in any situation, for all, so is a common fixed point of.
If and are all common fixed points of, then we will have
where
If, then, hence;
If, thenhence since, so.
Hence in any situation,. So is the unique common fixed points of
If the mappings in Theorem 2.1 are all single-valued, then Theorem 2.1 becomes the next form.
Theorem 2.2. Let be a nonempty closed subset of a complete metrically convex space with, a countable family of surjective single-valued mappings such that for any with, any,
(2)
where and is a constant number.
Furthermore, if for all, and for each and, there exists such that, then has a unique common fixed point in.
From Theorem 2.2, we can obtain the following more generalized common fixed point theorem.
Theorem 2.3. Let be a nonempty closed subset of a complete metrically convex space with, a family of subjective single-valued mappings, a family of positive integral numbers such that for any, ,
(3)
where and is a constant number. Furthermore, if 1) for all, 2) for each andthere exists such that, 3) for each with,. Then has a unique common fixed point in.
Proof Fix, and let, then satisfies all of the conditions of Theorem 2.2, hence has an unique common fixed point in. Now, we will prove that is also unique common fixed point of. In fact, for any fixed,
. This means that is a fixed point of. For any with, there exists such that by 2), and by (3) we have that
where
If, then, hence;
If, then
, hence
Hence in any situation, we have that is a fixed point of for each with. So is a common fixed point of. By uniqueness of common fixed points of, we have for each. Hence is a common fixed point of.
If and are all common fixed points of, then they are also common fixed points of, hence by the uniqueness of common fixed points of, we obtain. This means that for each has a unique common fixed point.
Now, we prove for each. In fact, for any with, since and, so, hence
by 3). Therefore, is a fixed point of for eachi.e., is a common fixed point of. But has a unique common fixe point, hence for each, and therefore is a common fixed point of. But
has a unique common fixed point, hence. Let, then is the common fixed point of. The uniqueness of common fixed points of is obvious.
Funding
This work was supported by the National Natural Science Foundation of China (No. 11361064).
[1] N. A. Assad, “On Fixed Point Theorem of Kannan in Banach Spaces,” Tamkang Journal of Mathematics, Vol. 7, 1976, pp. 91-94.
[2] N. A. Assad, “Fixed point Theorems for Set-Valued Transformations on Compact Sets,” Bolletino della Unione Matematica Italiana, Vol. 7, No. 4, 1973, pp. 1-7.
[3] N. A. Assad and W. A. Kirk, “Fixed Point Theorems for Set-Valued Mappings of Contractive Type,” Pacific Journal of Mathematics, Vol. 43, No. 3, 1972, pp. 553-562. http://dx.doi.org/10.2140/pjm.1972.43.553
[4] X. Zhang, “Common Fixed Point Theorem of Lipschitz Type Mappings on Convex Cone Metric Spaces,” Acta Mathematica Sinica (Chinese Series), Vol. 53, No. 6, 2010, pp. 1139-1148.
[5] M. Abbas, B. E. Rhoades, et al., “Common Fixed Points of Generalized Contractive Multivalued Mappings in Cone Metric Spaces,” Mathematical Communications, Vol. 14, No. 2, 2009, pp. 365-378.
[6] S. L. Singh and B. Ram, “Common Fixed Points of Commuting Mappings in 2-Metric Spaces,” Mathematical Semester Notes, Vol. 10, 1982, pp. 197-207.
[7] Y. J. Piao and Y. F. Jin, “New Unique Common Fixed Point Results for Four Mappings with -Contractive Type Theorems in 2-Metric Spaces,” Applied Mathematics, Vol. 3, No. 7, 2012, pp. 734-737. http://dx.doi.org/10.4236/am.2012.37108
[8] M. S. Khan, H. K. Pathak and M. D. Khan, “Some Fixed Point Theorems in Metrically Convex Spaces,” Georgian Mathematical Journal, Vol. 7, No. 3, 2000, pp. 523-530.
[9] S. K. Chatterjea, “Fixed Point Theorems,” Comptes rendus de l'Académie des Sciences, Vol. 25, 1972, pp. 727-730.
[10] O. Hadzic, “Common Fixed Point Theorem for a Family of Mappings in Convex Metric Spaces,” Univ. U. Novom Sadu, Zb. Rad. Prirod. Mat. Fak. Ser. Mat., Vol. 20, No. 1, 1990, pp. 89-95.
[11] Y. J. Piao, “Unique Common Fixed Point Theorems for a Family of Non-Self Maps in Metrically Convex Spaces,” Applied Mathematics, Vol. 22, No. 4, 2009, pp. 852-857.
[12] Y. J. piao, “Unique Common Fixed Point Theorems for a Family of Quasi-Contractive Type Maps in Metrically Convex Spaces,” Acta Mathematica Scientia, Vol. 30A, No. 2, 2010, pp. 487-493.
[13] J. R. Wu and H. Y. Liu, “Common Fixed Point Theorems for Sequences of -Type Contraction Set-Valued Mappings,” Chinese Quarterly Journal of Mathematics, Vol. 24, No. 4, 2009, pp. 504-510.
NOTES
*Corresponding author.