[1]
|
Domi?nguez De Mari?a, P., Carboni-Oerlemans, C., Tuin, B., Bargeman, G., Van Der Meer, A. and Van Gemert, R. (2005) Biotechnological applications of Candida antarctica lipase A: State-of-the-art. Journal of Molecular Catalysis B: Enzymatic, 37, 36-46.
|
[2]
|
Jaeger, K.E. and Reetz, M.T. (1998) Microbial lipases form versatile tools for biotechnology. Trends in Biotech- nology, 16, 396-403.
http://dx.doi.org/10.1016/S0167-7799(98)01195-0
|
[3]
|
Anderson, E.M., Larsson, K.M. and Kirk, O. (1998) One biocatalyst—Many applications: The use of Candida antarctica Blipase in organic synthesis. Biocatalysis and Biotransformation, 16, 181-204.
http://dx.doi.org/10.3109/10242429809003198
|
[4]
|
Akoh, C.C., Chang, S.-W., Lee, G.-C. and Shaw, J.-F. (2008) Bio-catalysis for the production of industrial products and functional foods from rice and other agricultural produce. Journal of Agricultural Food Chemistry, 56, 10445-10451. http://dx.doi.org/10.1021/jf801928e
|
[5]
|
Berger, M., Laumen, K. and Schneider, M.P. (1992) Enzymatic esterification of glycerol I. Lipase-catalyzed synthesis of regioisomerically pure 1,3-sndiacylglycerols. Journal of the American Oil Chemists’ Society, 69, 955- 960.
|
[6]
|
Chulalaksananukul, W., Condoret, J.-S. and Combes, D. (1993) Geranyl acetate synthesis by lipase-catalyzed- transesterification in supercritical carbon dioxide. Enzyme and Microbial Technology, 15, 691-698.
http://dx.doi.org/10.1016/0141-0229(93)90071-9
|
[7]
|
SzczesnaAntczak, M., Kubiak, A., Antczak, T. and Bielecki, S. (2009) Enzymatic biodiesel synthesis—Key factors affecting efficiency of the process. Renewable Energy, 34, 1185-1194.
http://dx.doi.org/10.1016/j.renene.2008.11.013
|
[8]
|
Holm, H.C. and Cowan, D. (2008) The evolution of enzymatic inter-esterification in the oils and fats industry. European Journal of Lipid Science and Technology, 110, 679-691. http://dx.doi.org/10.1002/ejlt.200800100
|
[9]
|
Brenna, E., Fuganti, C. and Serra, S. (2008) Applications of biocatalysis in fragrance chemistry: The enantiomers of α-, β-, and γ-irones. Chemical Society Reviews, 37, 2443-2451. http://dx.doi.org/10.1039/b801557k
|
[10]
|
Woodley, J.M. (2008) New opportunities for biocatalysis: Making pharmaceutical processes greener. Trends in Biotechnology, 26, 321-327.
http://dx.doi.org/10.1016/j.tibtech.2008.03.004
|
[11]
|
Iyer, P.V. and Ananthanarayan, L. (2008) Enzyme stability and stabili-zation—Aqueous and non-aqueous environment. Process Biochemistry, 43, 1019-1032.
http://dx.doi.org/10.1016/j.procbio.2008.06.004
|
[12]
|
O?’Fa?ga?in, C. (2003) Enzyme stabilization—Recent experimental progress. Enzyme and Microbial Technology, 33, 137-149.
|
[13]
|
Shaw, A. and Bott, R. (1996) Engineering enzymes for stability. Current Opinion in Structural Biology, 6, 546-550. http://dx.doi.org/10.1016/S0959-440X(96)80122-9
|
[14]
|
Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M. and Fernandez-Lafuente, R. (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40, 1451-1463.
http://dx.doi.org/10.1016/j.enzmictec.2007.01.018
|
[15]
|
Illanes, A. (1999) Stability of biocatalysts. Electronic Journal of Biotechnology, 2, 15-30.
http://dx.doi.org/10.2225/vol2-issue1-fulltext-2
|
[16]
|
Gianfreda, L. and Scarfi, M.R. (1991) Enzyme stabilization: State of the art. Molecular and Cellular Biochemistry, 100, 97-128. http://dx.doi.org/10.1007/BF00234161
|
[17]
|
Katchalski-Katzir, E. (1993) Immobilized enzymes—Learning from past successes and failures. Trends in Biotechnology, 11, 471-478.
http://dx.doi.org/10.1016/0167-7799(93)90080-S
|
[18]
|
Hartmeier, W. (1985) Immobilized biocatalysts—From simple to complex systems. Trends in Biotechnology, 3, 149-153.
http://dx.doi.org/10.1016/0167-7799(85)90104-0
|
[19]
|
Brady, L., Brzozowski, A.M., Derewenda, Z.S., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J.P., Christiansen, L., Huge-Jensen, B., Norskov, L., Thim, L. and Menge, U. (1990) A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature, 343, 767-770.
http://dx.doi.org/10.1038/343767a0
|
[20]
|
Brzozowski, A.M., Derewenda, U., Derewenda, Z.S., Dodson, G.G., Lawson, D.M., Turkenburg, J.P., Bjorkling, F., Huge-Jensen, B., Patkar, S.A. and Thim, L. (1991) A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature, 351, 491-494. http://dx.doi.org/10.1038/351491a0
|
[21]
|
Derewenda, Z.S., Derewenda, U. and Dodson, G.G. (1992) The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 ? resolution. Journal of Molecular Biology, 227, 818-839.
http://dx.doi.org/10.1016/0022-2836(92)90225-9
|
[22]
|
Schmid, R.D. and Verger, R. (1998) Lipases: Interfacial enzymes with attractive applications. Angewandte Chemie International Edition, 37, 1609-1633.
http://dx.doi.org/10.1002/(SICI)1521-3773(19980703)37:12<1608::AID-ANIE1608>3.0.CO;2-V
|
[23]
|
Verger, R. (1997) “Interfacial activation” of lipases: Facts and artifacts. Trends in Biotechnology, 15, 32-38.
http://dx.doi.org/10.1016/S0167-7799(96)10064-0
|
[24]
|
Pessela, B.C.C., Munilla, R., Betancor, L., Fuentes, M., Carrascosa, A.V., Vian, A., Fernandez-Lafuente, R. and Guisa?n, J.M. (2004) Ion exchange using poorly activated supports, an easy way for purification of large proteins. Journal of Chromatgraphy A, 1034, 155-159.
|
[25]
|
Fuentes, M., Mateo, C., Pessela, B.C.C., Batalla, P., Fernandez-Lafuente, R. and Guisa?n, J.M. (2007) Solid phase proteomics: Dramatic reinforcement of very weak protein-protein interactions. Journal of Chromatography B, 849, 243-250.
|
[26]
|
Kumar, A., Galaev, I.Yu. and Mattiasson, B. (2000) Polymer displacement/shielding in protein chromatography. Journal of Chromatography B, 74, 103-113.
http://dx.doi.org/10.1016/S0378-4347(00)00089-X
|
[27]
|
Mateo, C., Abian, O., Fernandez-Lafuente, R. and Guisan, J.M. (2000) Reversible enzyme immobilization via a very strong and non-distorting ionic adsorption on support-polyethylenimine composites. Biotechnology and Bioengineering, 68, 98-105.
http://dx.doi.org/10.1002/(SICI)1097-0290(20000405)68:1<98::AID-BIT12>3.0.CO;2-T
|
[28]
|
Bastida, A., Sabuquillo, P., Armisen, P., Ferna?ndez-Lafuente, R., Huguet, J. and Guisa?n, J.M. (1998) A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnology and Bioengineering, 58, 486- 493.
|
[29]
|
Fernandez-Lafuente, R., Armise?n, P., Sabuquillo, P., Ferna?ndez-Lorente, G. and Guisa?n, J.M. (1998) Immobilization of lipases by selective adsorption on hydrophobic supports. Chemistry and Physics of Lipids, 93, 185-197.
|
[30]
|
Winkler, U.K. and Stuckmann, M. (1979) Glycogen, hyaluronate and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. Journal of Bacteriology, 138, 663-670.
|
[31]
|
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utiliz- ing the principle of protein-dye bindind. Analitical Biochemistry, 72, 248-254.
http://dx.doi.org/10.1016/0003-2697(76)90527-3
|
[32]
|
Laemmli U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 277, 680-685.
http://dx.doi.org/10.1038/227680a0
|
[33]
|
Fuci?os, P., Abadin, C.M., Sanroman, A., Longo, M.A., Pastrana, L. and Rúa, M.L. (2005) Identification of extracellular lipases/esterases produced by Thermus thermophilus B27: Partial purification and preliminary biochemical characterization. Journal of Biotechnology, 117, 233-241. http://dx.doi.org/10.1016/j.jbiotec.2005.01.019
|
[34]
|
Velu, N., Divakar, K., Nandhinidevi, G. and Gauntam, P. (2012) Lipases from Aeromonas caviae AU04: Isolation, purification and protein aggregation. Biocatalysis and Agricultural Biotechnology, 1, 45-50.
http://dx.doi.org/10.1016/j.bcab.2011.08.004
|
[35]
|
Pastore, G.M., Costa, V.S.R. and Koblitz, M.G.B. (2003) Production, partial purification and biochemical characterization of a novell Rhizopus sp. strain lipase. Ciência e Tecnologia de Alimentos, 23, 135-140.
http://dx.doi.org/10.1590/S0101-20612003000200006
|
[36]
|
Liu, Z., Chi, Z., Wang, L. and Li, J. (2008) Production, purification and characterization of an extracellular lipase from Aureo-basidium pullulans HN2.3 with potential application for the hydrolysis of edible oils. Biochemical Engineering Journal, 40, 445-451.
http://dx.doi.org/10.1016/j.bej.2008.01.014
|
[37]
|
Lima, V. M.G., Krieger, N., Mitchell, D.A., Baratti, J.C., Filippis, I. and Fontana, J.D. (2004) Evaluation of the potential for use in biocatalysis of a lipase from a wild strain of Bacillus megaterium. Journal of Molecular Catalysis B: Enzymatic, 31, 53-61.
http://dx.doi.org/10.1016/j.molcatb.2004.07.005
|
[38]
|
Sharma, R., Chisti, Y. and Banerjee, U.C. (2001) Production, purification, characterization, and applications of lipases. Biotechnology Advances, 9, 627-662.
http://dx.doi.org/10.1016/S0734-9750(01)00086-6
|
[39]
|
Gomes, E., Guez, M.A.U., Martin, N. and Silva, R. (2007) Thermostable enzymes: Sources, production and industrial applications. Química Nova, 30, 136-145.
http://dx.doi.org/10.1590/S0100-40422007000100025
|
[40]
|
Adamczak, M. and Bednarski, W. (2004) Enhanced activity of intracellular lipases from Rhizomucor miehei and Yarrowia lipolytica by immobilization on biomass support particles. Process Biochemistry, 39, 1347-1361.
http://dx.doi.org/10.1016/S0032-9592(03)00266-8
|
[41]
|
Hiol, A., Jonzo, M.D., Rugani, N., Druet, D., Sarda, L. and Comeau, L.C. (2000) Purification and characterization of an extracellular lipase from thermophilic Rhizopus oryzae strain isolated from palm fruit. Enzyme and Microbial Technology, 26, 421-430.
http://dx.doi.org/10.1016/S0141-0229(99)00173-8
|
[42]
|
Nawani, N. and Kaur, J. (2007) Studies on lipolytic isoenzymes from a thermophilic Bacillus sp: Production, purification and biochemical characterization. Enzyme and Microbial Technology, 40, 881-887.
http://dx.doi.org/10.1016/j.enzmictec.2006.07.006
|
[43]
|
Sidhu, P., Sharma, R., Soni, S.K. and Gupta, J.K. (1998) Production of extracellular alkaline lipase by a new thermophilic Bacillus sp. Folia Microbiologica, 43, 51-54.
http://dx.doi.org/10.1007/BF02815542
|
[44]
|
Chartrain, M., Katz, L., Marcin, C., Thien, M., Smith, S., Fisher, E., Goklen, K., Salmon, P., Brix, T., Price, K. and Greasham, R. (1993) Purification and characterization of a novel bioconverting lipase from Pseudomonas aeruginosa MB 5001. Enzyme and Microbial Technology, 15, 575-580.
http://dx.doi.org/10.1016/0141-0229(93)90019-X
|
[45]
|
Sharon, C., Furugoh, S., Yamakido, T., Ogawa, H.I. and Kato, Y. (1998) Purification and characterization of a lipase from Pseudomonas aeruginosa KKA-5 and its role in castor oil hydrolysis. Journal of Industrial Microbiology and Biotechnology, 20, 304-307.
http://dx.doi.org/10.1038/sj.jim.2900528
|
[46]
|
Ali, M.S., Yun, C.C., Chor, A.L., Rahman, R.N., Basri, M. and Salleh, A.B. (2012) Purification and characterisation of an F16L mutant of termostable lipase. The Protein Journal, 31, 229-237.
http://dx.doi.org/10.1007/s10930-012-9395-8
|
[47]
|
Bradcova, J., Zarevucka, M. and Mackova, M. (2010) Diferences in hydrolytic abilities of two crude lipases from Geotrichum candidum 4013. Yeast, 27, 1029-1038.
http://dx.doi.org/10.1002/yea.1812
|
[48]
|
Okada, T. and Morrissey, M.T. (2011) Production of n-3 polyunsatured fatty acid concentrate from sardine oil by lipase catalyzed hydrolysis. Food Chemistry, 103, 1411- 1419. http://dx.doi.org/10.1016/j.foodchem.2006.10.057
|