[1]
|
Mjor, I.A., Dahl, J.E. and Moorhead, J.E. (2002) Placement and replacement of restorations in primary teeth. Acta Odontologica Scandinavica, 60, 25-28. http://dx.doi.org/10.1080/000163502753471961
|
[2]
|
Forss, H. and Widstrom, E. (2004) Reasons for restorative therapy and longevity of restorations in adults. Acta Odontologica Scandinavica, 62, 82-86. http://dx.doi.org/10.1080/00016350310008733
|
[3]
|
Manhart, J., Garcia-Godoy, F. and Hickel, R. (2002) Direct posterior restorations: Clinical results and new developments. Dental Clinics of North America, 46, 303-339. http://dx.doi.org/10.1016/S0011-8532(01)00010-6
|
[4]
|
Deligeorgi, V., Mjor, I.A. and Wilson, N.H. (2001) An overview of reasons for the placement and replacement of restorations. Primary Dental Care, 8, 5-11. http://dx.doi.org/10.1308/135576101771799335
|
[5]
|
Craig, R.G. and Power, J.M. (2002) Restorative dental materials. 11th Edition, Mosby-Year Book, Inc., St Louis, 614-618.
|
[6]
|
Wiegand, A., Buchalla, W. and Attin, T. (2007) Review on fluoride-releasing restorative materials—Fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dental Materials, 23, 343-362. http://dx.doi.org/10.1016/j.dental.2006.01.022
|
[7]
|
Osinaga, P.W., Grande, R.H., Ballester, R.Y., Simionato, M.R., Delgado Rodrigues, C.R. and Muench, A. (2003) Zinc sulfate addition to glass-ionomer-based cements: Influence on physical and antibacterial properties, zinc and fluoride release. Dental Materials, 19, 212-217. http://dx.doi.org/10.1016/S0109-5641(02)00032-5
|
[8]
|
Takahashi, Y., Imazato, S., Kaneshiro, A.V., Ebisu, S., Frencken, J.E. and Tay, F.R. (2006) Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dental Materials, 22, 467-452. http://dx.doi.org/10.1016/j.dental.2005.08.003
|
[9]
|
Yamamoto, K., Ohashi, S., Aono, M., Kokubo, T., Yamada, I. and Yamauchi, J. (1996) Antibacterial activity of silver ions implanted in SiO2 filler on oral streptococci. Dental Materials, 12, 227-229. http://dx.doi.org/10.1016/S0109-5641(96)80027-3
|
[10]
|
Syafiuddin, T., Hisamitsu, H., Toko, T., Igarashi, T., Goto, N., Fujishima, A. and Miyazaki, T. (1997) In vitro inhibition of caries around a resin composite restoration containing antibacterial filler. Biomaterials, 18, 1051-1057. http://dx.doi.org/10.1016/S0142-9612(97)88072-6
|
[11]
|
Gottenbos, B., van der Mei, H.C., Klatter, F., Nieuwenhuis, P. and Busscher, H.J. (2002) In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials, 23, 1417-1423. http://dx.doi.org/10.1016/S0142-9612(01)00263-0
|
[12]
|
Thebault, P., Taffin de Givenchy, E., Levy, R., Vandenberghe, Y., Guittard, F. and Geribaldi, S. (2009) Preparation and antimicrobial behaviour of quaternary ammonium thiol derivatives able to be grafted on metal surfaces. European Journal of Medicinal Chemistry, 44, 717-724. http://dx.doi.org/10.1016/j.ejmech.2008.05.007
|
[13]
|
Imazato, S., Russell, R.R. and McCabe, J.F. (1995) Antibacterial activity of MDPB polymer incorporated in dental resin. Journal of Dentistry, 23, 177-181. http://dx.doi.org/10.1016/0300-5712(95)93576-N
|
[14]
|
Murata, H. (2007) Permanent, non-leaching antibacterial surfaces—2: How high density cationic surfaces kill bacterial cells. Biomaterials, 28, 4870-4879. http://dx.doi.org/10.1016/j.biomaterials.2007.06.012
|
[15]
|
Lu, G.Q., Wu, D.C. and Fu, R.W. (2007) Studies on the synthesis and antibacterial activities of polymeric quarternary ammonium salts from dimethylaminoethyl methacrylate. Reactive & Functional Polymers, 67, 355-366. http://dx.doi.org/10.1016/j.reactfunctpolym.2007.01.008
|
[16]
|
Lee, S.B., Koepsel, R.R., Morley, S.W., Matyjaszewski, K., Sun, Y. and Russell, A.J. (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules, 5, 877-882. http://dx.doi.org/10.1021/bm034352k
|
[17]
|
Li, F., Chai, Z.G., Sun, M.N., Wang, F., Ma, S., Zhang, L., Fang, M. and Chen, J.H. (2009) Anti-biofilm effect of dental adhesive with cationic monomer. Journal of Dental Research, 88, 372-376. http://dx.doi.org/10.1177/0022034509334499
|
[18]
|
Li, F., Chen, J., Chai, Z., Zhang, L., Xiao, Y., Fang, M. and Ma, S. (2009) Effects of a dental adhesive incorporating antibacterial monomer on the growth, adherence and membrane integrity of Streptococcus mutans. Journal of Dentistry, 37, 289-296. http://dx.doi.org/10.1016/j.jdent.2008.12.004
|
[19]
|
Beyth, N., Yudovin-Farber, I., Bahir, R., Domb, A.J. and Weiss, E.I. (2006) Antibacterial activity of dental composites containing quaternary ammonium polyethyleneimine nanoparticles against Streptococcus mutans. Biomaterials, 27, 3995-4002. http://dx.doi.org/10.1016/j.biomaterials.2006.03.003
|
[20]
|
Chai, Z., Li, F., Fang, M., Wang, Y., Ma, S., Xiao, Y., Huang, L. and Chen, J. (2011) The bonding property and cytotoxicity of a dental adhesive incorporating a new antibacterial monomer. Journal of Oral Rehabilitation, 38, 849-856. http://dx.doi.org/10.1111/j.1365-2842.2011.02212.x
|
[21]
|
Ma, S., Izutani, N., Imazato, S., Chen, J.H., Kiba, W., Yoshikawa, R., Takeda, K., Kitagawa, H. and Ebisu, S. (2012) Assessment of bactericidal effects of quaternary ammonium-based antibacterial monomers in combination with colloidal platinum nanoparticles. Dental Materials Journal, 31, 150-156. http://dx.doi.org/10.4012/dmj.2011-180
|
[22]
|
Cheng, L., Weir, M.D., Xu, H.H., Antonucci, J.M., Kraigsley, A.M., Lin, N.J., Lin-Gibson, S. and Zhou, X. (2012) Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dental Materials, 28, 561-572. http://dx.doi.org/10.1016/j.dental.2012.01.005
|
[23]
|
Cheng, L., Weir, M.D., Zhang, K., Xu, S.M., Chen, Q., Zhou, X. and Xu, H.H. (2012) Antibacterial nanocomposite with calcium phosphate and quaternary ammonium. Journal of Dental Research, 91, 460-466. http://dx.doi.org/10.1177/0022034512440579
|
[24]
|
Xie, D., Weng, Y., Guo, X., Zhao, J., Gregory, R.L. and Zheng, C. (2011) Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions. Dental Materials, 27, 487-496. http://dx.doi.org/10.1016/j.dental.2011.02.006
|
[25]
|
Imazato, S., Ebi, N., Takahashi, Y., Kaneko, T., Ebisu, S. and Russell, R.R.B. (2003) Antibacterial activity of bactericide-immobilized filler for resin-based restoratives. Biomaterials, 24, 3605-3609. http://dx.doi.org/10.1016/S0142-9612(03)00217-5
|
[26]
|
Ebi, N., Imazato, S., Noiri, Y. and Ebisu, S. (2001) Inhibitory effects of resin composite containing bactericideimmobilized filler on plaque accumulation. Dental Materials, 17, 485-491. http://dx.doi.org/10.1016/S0109-5641(01)00006-9
|
[27]
|
Jung, J.H., Pummangura, S., Chaichantipyuth, C., Patarapanich, C., Fanwick, P.E., Chang, C.J. and Mclaughlin, J.L. (1990) New bioactive heptenes from melodorum fruitcosum (annonaceae). Tetrahedron, 46, 5043-5054. http://dx.doi.org/10.1016/S0040-4020(01)87811-X
|
[28]
|
Jones, J.B. and Young, J.M. (1968) Carcinogenicity of lactones III: The reactions of unsaturated 4-lactones with l-cysteine. Journal of Medicinal Chemistry, 11, 1176. http://dx.doi.org/10.1021/jm00312a017
|
[29]
|
Lattmann, E., Dunn, S., Niamsanit, S. and Sattayasai, N. (2005) Synthesis and antibacterial activities of 5-hydroxy4-amino-2(5H)-furanones. Bioorganic & Medicinal Chemistry Letters, 15, 919-921. http://dx.doi.org/10.1016/j.bmcl.2004.12.051
|
[30]
|
Lattmann, E., Coombs, J. and Hoffmann, H.M.R. (1996) Paranofuranones via lewis acid mediated hetero-dielsalder reactions of 4-Furan-2(5H)-ones. A convergent route to the manoalide substructure. Synthesis, 171-177. http://dx.doi.org/10.1055/s-1996-4158
|
[31]
|
Martinelli, D., Grossmann, G., Sequin, U., Brandl, H. and Bachofen, R. (2004) Effects of natural and chemically synthesized furanones on quorum sensing in Chromobacterium violaceum. BMC Microbiology, 4, 25. http://dx.doi.org/10.1186/1471-2180-4-25
|
[32]
|
Xie, D., Weng, Y. and Zhao, J. (2009) Alternative methacrylate-tethering methods for resin-modified glass-ionomer cements. Journal of Applied Polymer Science, 111, 869-875.
|
[33]
|
Wu, W., Xie, D., Puckett, A. and Mays, J. (2003) Synthesis and formulation of vinyl-containing polyacids for improved light-cured glass-ionomer cements. European Polymer Journal, 39, 663-670. http://dx.doi.org/10.1016/S0014-3057(02)00301-4
|
[34]
|
Xie, D., Yang, Y., Zhao, J., Park, J.G. and Zhang, J.T. (2007) A novel comonomer-free light-cured glass-ionomer system for reduced cytotoxicity and enhanced mechanical strength. Dental Materials, 23, 994-1003. http://dx.doi.org/10.1016/j.dental.2006.09.001
|
[35]
|
Cattani-Lorente, M.A., Dupuis, V., Moya, F., Payan, J. and Meyer, J.-M. (1999) Comparative study of the physical properties of a polyacid-modified composite resin and a resin-modified glass ionomer cement. Dental Materials, 15, 21-32. http://dx.doi.org/10.1016/S0109-5641(99)00010-X
|
[36]
|
Davidson, C.L. and Mjor, I.A. (1999) Advances in glass— Ionomer cements. Quintessence Publishing Co, Chicago.
|