[1]
|
P. J. Currie, A. Mirza, R. Fuld, D. Park and J. R. Vasselli, “Ghrelin Is an Orexigenic and Metabolic Signaling Peptide in the Arcuate and Paraventricular Nuclei,” American Journal of Physiology, Vol. 289, No. 2, 2005, pp. R353-R358.
|
[2]
|
P. J. Currie, C. D. Coiro, R. Duenas, J. L. Guss, A. Mirza and N. Tal, “Urocortin I Inhibits the Effects of Ghrelin and Neuropeptide Y on Feeding and Energy Substrate Utilization,” Brain Research, Vol. 1385, 2001, pp. 127-134. http://dx.doi.org/10.1016/j.brainres.2011.01.114
|
[3]
|
T. L. Horvath, T. Castaneda, M. Tang-Christensen, U. Pagotto and M. H. Tschop, “Ghrelin as a Potential Anti-Obesity Target,” Current Pharmaceutical Design, Vol. 9, No. 17, 2003, pp. 1383-1395. http://dx.doi.org/10.2174/1381612033454748
|
[4]
|
A. M. Wren, C. J. Small, C. R. Abbott, W. S. Dhillo, L. J. Seal, M. A. Cohen, R. L. Batterham, S. Taheri, S. A. Stanley, M. A. Ghatei and S. R. Bloom, “Ghrelin Causes Hyperphagia and Obesity in Rats,” Diabetes, Vol. 50, No. 11, 2001, pp. 2540-2547. http://dx.doi.org/10.2337/diabetes.50.11.2540
|
[5]
|
P. J. Currie, R. Khelemsky, E. M. Rigsbee, L. M. Dono, C. D. Coiro, C. D. Chapman and K. Hinchcliff, “Ghrelin Is an Orexigenic Peptide and Elicits Anxiety-Like Behaviors Following Administration into Discrete Regions of the Hypothalamus,” Behavioral Brain Research, Vol. 226, No. 1, 2012, pp. 96-105. http://dx.doi.org/10.1016/j.bbr.2011.08.037
|
[6]
|
P. J. Currie, L. M. Schuette, S. E. R. Wauson, W. N. Voss and M. J. Angeles, “Activation of Urocortin 1 and Ghrelin Signaling in the Basolateral Amygdala Induces Anxiogenesis,” NeuroReport, 2013, in press. http://dx.doi.org/10.1097/WNR.0000000000000047
|
[7]
|
C. Hansson, D. Haage, M. Taube, E. Egecioglu, N. Salome and S. L. Dickson, “Central Administration of Ghrelin Alters Emotional Responses in Rats: Behavioural, Electrophysiological, and Molecular Evidence,” Neuroscience, Vol. 180, 2011, pp. 201-211. http://dx.doi.org/10.1016/j.neuroscience.2011.02.002
|
[8]
|
S. J. Spencer, L. Xu, M. A. Clarke, M. Lemus, A. Reichenbach, B. Geenen, T. Kozicz and Z. B. Andrews, “Ghrelin Regulates the Hypothalamic-Pituitary-Adrenal Axis and Restricts Anxiety after Acute Stress,” Biological Psychiatry, Vol. 72, No. 6, 2012, pp. 457-465. http://dx.doi.org/10.1016/j.biopsych.2012.03.010
|
[9]
|
S. M. Jacoby and P. J. Currie, “SKF 83566 Attenuates the Effects of Ghrelin on Performance in the Object Location Memory Task,” Neuroscience Letters, Vol. 504, No. 3, 2011, pp. 316-320. http://dx.doi.org/10.1016/j.neulet.2011.09.056
|
[10]
|
S. E. Kanoski, S. M. Fortin, K. M. Ricks and H. J. Grill, “Ghrelin Signaling in the Ventral Hippocampus STIMULATES Learned and Motivational Aspects of Feeding via PI3K-Akt Signaling,” Biological Psychiatry, Vol. 73, No. 9, 2013, pp. 915-923. http://dx.doi.org/10.1016/j.biopsych.2012.07.002
|
[11]
|
Y. Kawahara, F. Kaneko, M. Yamada, Y. Kishikawa, H. Kawahara and A. Nishi, “Food Reward-Sensitive Interaction of Ghrelin and Opioid Receptor Pathways in the Mesolimbic Dopamine System,” Neuropharmacology, Vol. 67, 2013, pp. 395-402. http://dx.doi.org/10.1016/j.neuropharm.2012.11.022
|
[12]
|
S. J. King, A. M. Isaacs, E. O’Farrell and A. Abizaid, “Motivation to Obtain Preferred Foods Is Enhanced by Ghrelin in the Ventral Tegmental Area,” Hormones and Behavior, Vol. 60, No. 5, 2011, pp. 572-580. http://dx.doi.org/10.1016/j.yhbeh.2011.08.006
|
[13]
|
J. K. Jang, W. Y. Kim, B. R. Cho, J. W. Lee and J. H. Kim, “Microinjection of Ghrelin in the Nucleus Accumbens Core Enhances Locomotor Activity Induced by Cocaine,” Behavioural Brain Research, Vol. 248, 2013, pp. 7-11. http://dx.doi.org/10.1016/j.bbr.2013.03.049
|
[14]
|
M. Palotai, Z. Bagosi, M. Jaszberenyi, K. Csabafi, R. Dochnal, M. Manczinger, G. Telegdy and G. Szabo, “Ghrelin and Nicotine Stimulate Equally the Dopamine Release in the Rat Amygdala,” Neurochemical Research, Vol. 38, No. 38, 2013, pp. 1989-1995. http://dx.doi.org/10.1007/s11064-013-1105-1
|
[15]
|
K. P. Skibicka, R. H. Shirazi, C. Rabasa-Papio, M. Alvarez-Crespo, C. Neuber, H. Vogel and S. L. Dickson, “Divergent Circuitry Underlying Food Reward and Intake Effects of Ghrelin: Dopaminergic VTA-Accumbens Projection Mediates Ghrelin’s Effects on Food Reward but Not Food Intake,” Neuropharmacology, Vol. 73, 2013, pp. 274-283. http://dx.doi.org/10.1016/j.neuropharm.2013.06.004
|
[16]
|
W. A. Banks, M. Tschop, S. M. Robinson and M. L. Heiman, “Extent and Direction of Ghrelin Transport across the Blood-Brain Barrier Is Determined by Its Unique Primary Structure,” Journal of Pharmacology and Experimental Therapeutics, Vol. 302, No. 2, 2002, pp. 822-827. http://dx.doi.org/10.1124/jpet.102.034827
|
[17]
|
A. M. Naleid, M. K. Grace, D. E. Cummings and A. S. Levine, “Ghrelin Induces Feeding in the Mesolimbic Reward Pathway between the Ventral Tegmental Area and the Nucleus Accumbens,” Peptides, Vol. 26, No. 11, 2005, pp. 2274-2279. http://dx.doi.org/10.1016/j.peptides.2005.04.025
|
[18]
|
P. J. Wellman, C. N. Hollas and A. E. Elliott, “Systemic Ghrelin Sensitizes Cocaine-Induced Hyperlocomotion in Rats,” Regulatory Peptides, Vol. 146, No. 1-3, 2008, pp. 33-37. http://dx.doi.org/10.1016/j.regpep.2007.07.007
|
[19]
|
K. W. Davis, P.J. Wellman and P. S. Clifford, “Augmented Cocaine Conditioned Place Preference in Rats Pretreated with Systemic Ghrelin,” Regulatory Peptides, Vol. 140, No. 3, 2007, pp. 148-152. http://dx.doi.org/10.1016/j.regpep.2006.12.003
|
[20]
|
E. Jerlhag, E. Egecioglu, S. L. Dickson and J. A. Engel, “Ghrelin Receptor Antagonism Attenuates Cocaineand Amphetamine-Induced Locomotor Stimulation, Accumbal Dopamine Release, and Conditioned Place Preference,” Psychopharmacology, Vol. 211, No. 4, 2010, pp. 415-422. http://dx.doi.org/10.1007/s00213-010-1907-7
|
[21]
|
L. M. Schuette, C. C. Gray, S. E. R. Wauson, K. R. Davis and P. J. Currie, “Mesotelencephalic Ghrelinergic Signaling in Reward and Limbic Function,” Program No. 707.18. 2012 Neuroscience Meeting Planner, New Orleans, Society for Neuroscience, 2012, Online.
|
[22]
|
G. Paxinos and C. Watson, “The Rat Brain in Stereotaxic Coordinates,” Academic Press, New York, 2007.
|
[23]
|
D. Quarta, C. DiFrancesco, S. Melotto, L. Mangiarini, C. Heidbreder and G. Hedou, “Systemic Administration of Ghrelin Increases Extracellular Dopamine in the Shell but Not the Core Subdivision of the Nucleus Accumbens,” Neurochemistry International, Vol. 54, No. 2, 2009, pp. 89-94. http://dx.doi.org/10.1016/j.neuint.2008.12.006
|
[24]
|
Z. Y. Weinberg, M. L. Nicholson and P. J. Currie, “6-Hydroxydopamine Lesions of the Ventral Tegmental Area Suppress Ghrelin’s Ability to Elicit Food-Rein-forced behavior,” Neuroscience Letters, Vol. 499, No. 2, 2011, 70-73. http://dx.doi.org/10.1016/j.neulet.2011.05.034
|
[25]
|
E. Jerlhag, S. Landgren, E. Eqecioglu, S. L. Dickson and J. A. Engel, “The Alcohol-Induced Locomotor Stimulation and Accumbal Dopamine Release Is Suppressed in Ghrelin Knockout Mice,” Alcohol, Vol. 45, No. 4, 2011, pp. 341-347. http://dx.doi.org/10.1016/j.alcohol.2010.10.002
|
[26]
|
A. Abizaid, Y. S. Mineur, R. H. Roth, J. D. Elsworth, M. W. Sleeman, M. R. Picciotto and T. L. Horvath, “Reduced Locomotor Responses to Cocaine in Ghrelin-Deficient Mice,” Neuroscience, Vol. 192, 2011, pp. 500-506. http://dx.doi.org/10.1016/j.neuroscience.2011.06.001
|
[27]
|
P. S. Clifford, J. Rodriguez, D. Schul, S. Hughes. T. Kniffin, N. Hart, S. Eitan, L. Brunel. J. A. Fehrentz, J. Martinez and P. J. Wellman, “Attenuation of Cocaine-Induced Locomotor Sensitization in Rats Sustaining Genetic or Pharmacologic Antagonism of Ghrelin Receptors,” Addiction Biology, Vol. 17, No. 6, 2011, pp. 956-963. http://dx.doi.org/10.1111/j.1369-1600.2011.00339.x
|
[28]
|
E. Egecioglu, E. Jerlhag, N. Salome, K. P. Skibicka, D. Haage, M. Bohlooly-Y, D. Andersson, M. Bjursell, D. Perrisoud, J. A. Engel and S. L. Dickson, “Ghrelin Increases Intake of Rewarding Food in Rodents,” Addiction Biology, Vol. 15, No. 3, 2010, pp. 304-311. http://dx.doi.org/10.1111/j.1369-1600.2010.00216.x
|
[29]
|
Y. Kawahara, F. Kaneko, M. Yamada, Y. Kishikawa, H. Kawahara and A. Nishi, “Food Reward-Sensitive Interaction of Ghrelin and Opioid Receptor Pathways in Mesolimbic Dopamine System,” Neuropharmacology, Vol. 67, 2013, pp. 395-402. http://dx.doi.org/10.1016/j.neuropharm.2012.11.022
|