[1]
|
J. Lysmer and L. A. Drake, “A Finite Element Method for Seismology,” In: B. Alder, S. Fernbach and B. A. Bolt, Eds., Methods in Computational Physics, Vol. 11, Academic Press, New York, 1972.
|
[2]
|
V. Pereyra, E. Richardson and S. E. Zarantonello, “Large Scale Calculations of 3D Elastic Wave Propagation in a Complex Geology,” Proceedings Supercomputing, 1992, pp. 301-309.
|
[3]
|
E. Kim, J. Bielak and O. Ghattas, “Large-scale North-Ridge Earthquake Simulation Using Octree-Based Multi-reslution Mesh Method,” Proceed-ings of the 16th ASCE Engineering Mechanics Conference, Seattle, July 2003.
|
[4]
|
S. M. Day, “Three-Dimensional Simulation of Spontaneous Rupture: The Effect of Nonuniform Prestress,” Bulletin of the Seismological Society of America, Vol. 72, 1982, pp. 1881-1902.
|
[5]
|
D. D. Oglesby, R. J. Archuleta and S. B. Nielsen, “Earthquakes on Dipping Faults: The Effects of Broken Symmetry,” Science, Vol. 280, No. 5366, 1998, pp. 1055-1059. http://dx.doi.org/10.1126/science.280.5366.1055
|
[6]
|
T. J. R. Hughes, “Finite Element Method—Linear Static and Dynamic Finite Element Analysis,” Prentice-Hall, Englewood Cliffs, 1987.
|
[7]
|
G. L. Gourdreau and J. O. Hallquist, “Recent Developments in Large Scale Finite Elements Lagrangian Hydro-code Technology,” Computer Methods in Applied Mechanics and Engineering, Vol. 33, No. 1-3, 1982, pp. 725-757. http://dx.doi.org/10.1016/0045-7825(82)90129-3
|
[8]
|
T. Belytschko, J. S. Ong, W. K. Liu and J. M. Kennedy, “Hourglass Control in Linear and Nonlinear Problems,” Computer Methods in Applied Mechanics and Engineering, Vol. 43, No. 3, 1984, pp. 251-276.
http://dx.doi.org/10.1016/0045-7825(84)90067-7
|
[9]
|
D. Kosloff and G. A. Frazier, “Treatment of Hourglass Patterns in Low Order Finite Element Codes,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 2, No. 1, 1978, pp. 57-72.
http://dx.doi.org/10.1002/nag.1610020105
|
[10]
|
S. Ma and L. Peng, “Modeling of the Perfectly Matched Layer Absorbing Boundaries and Intrinsic Attenuation in Explicit Finite-Element Methods,” Bulletin of the Seis-mological Society of America, Vol. 96, No. 5, 2006, pp. 1779-1794. http://dx.doi.org/10.1785/0120050219
|