[1]
|
WHO (World Health Organization), 2013.
http://www.who.int/influenza/human_animal_interface/EN_GIP_20121217CumulativeNumberH5N1cases.pdf
|
[2]
|
A. Burns, D. van der Mensbrugghe and H. Timmer, “Evaluating the Economic Consequences of Avian Influenza,” World Bank Report, 2008.
http://siteresources.worldbank.org/EXTAVIANFLU/Resources/EvaluatingAHIeconomics_2008.pdf
|
[3]
|
B. Charlton, B. Crossley and S. Hietala, “Conventional and Future Diagnostics for Avian Influenza,” Comparative Immunology Microbiology and Infectious Diseases, Vol. 32, No. 4, 2009, pp. 341-350.
http://dx.doi.org/10.1016/j.cimid.2008.01.009
|
[4]
|
J. S. Ellis and M. C. Zambon, “Molecular Diagnosis of Influenza,” Reviews in Medical Virology, Vol. 12, No. 6, 2002, pp. 375-389. http://dx.doi.org/10.1002/rmv.370
|
[5]
|
Y. Amano and Q. Cheng, “Detection of Influenza Virus: Traditional Approaches and Development of Biosensors,” Analytical and Bioanalytical Chemistry, Vol. 381, No. 1, 2005, pp. 156-164.
http://dx.doi.org/10.1007/s00216-004-2927-0
|
[6]
|
C. Estmer-Nilsson, S. Abbas, M. Bennemo, A. Larsson, M. D. H?m?l?inen and ?. Frostell-Karlsson, “A Novel Assay for Influenza Virus Quantification Using Surface Plasmon Resonance,” Vaccine, Vol. 28, No. 3, 2010, pp. 759-766. http://dx.doi.org/10.1016/j.vaccine.2009.10.070
|
[7]
|
H. Bai, R. Wang, B. Hargis, H. Lu and Y. Li, “A SPR Aptasensor for Detection of Avian Influenza Virus H5N1,” Sensors, Vol. 12, No. 9, 2012, pp. 12506-12518.
http://dx.doi.org/10.3390/s120912506
|
[8]
|
J. Xu, D. Suarez and D. S. Gottfried, “Detection of Avian Influenza Virus Using an Interferometric Biosensor,” Analytical and Bioanalytical Chemistry, Vol. 389, No. 1, 2007, pp. 1193-1199.
http://dx.doi.org/10.1007/s00216-007-1525-3
|
[9]
|
R. Wang, Y. Wang, K. Lassiter, Y. Li, B. Hargis, S. Tung, et al., “Interdigitated Array Microelectrode Based Impedance Immunosensor for the Detection of Avian Influenza Virus HN1,” Talanta, Vol. 79, No. 2, 2009, pp. 159- 164. http://dx.doi.org/10.1016/j.talanta.2009.03.017
|
[10]
|
J. Lum, R. Wang, K. Lassiter, B. Srinivasan, D. Abi-Ghanem, L. Berghman, et al., “Rapid Detection of Avian In- fluenza H5N1 Virus Using Impedance Measurement of Immuno-Reaction Coupled with RBC Amplification,” Biosensors and Bioelectronics, Vol. 38, 2012, pp. 67-73.
http://dx.doi.org/10.1016/j.bios.2012.04.047
|
[11]
|
D. Ivnitski, I. Abdel-Hamid, P. Atanasov and E. Wilkins, “Biosensors for Detection of Pathogenic Bacteria,” Bio- sensors and Bioelectronics, Vol. 14, 1999, pp. 599-624.
http://dx.doi.org/10.1016/S0956-5663(99)00039-1
|
[12]
|
A. J. Bard and L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications,” 2nd Edition, John Wiley & Sons, New York, 2001.
|
[13]
|
G. Sauerbrey, “Verwendung von Schwingquarzen zur W?- gung Dünner Schichten und Zur Mikorw?gung,” Zeitschrift für Physik, Vol. 155, 1959, pp. 206-222.?
|
[14]
|
K. K. Kanazawa and J. G. Gordon, “The Oscillation Frequency of a Quartz Resonator in Contact with Liquid,” Analytica Chemica Acta, Vol. 175, 1985, pp. 99-105.
|
[15]
|
F. Liu, Y. Li, X. Su, M. F. Slavik, Y. Ying and J. Wang, “QCM Immunosensor with Nanoparticle Amplification for Detection of Escherichia coli O157:H7,” Sensing and Instrumentation for Food Quality, Vol. 1, 2007, pp. 161-168. http://dx.doi.org/10.1007/s11694-007-9021-1
|
[16]
|
T. M. P. Hewa, G. A. Tannock, D. E. Mainwaring, S. Harrison and J. V. Fecondo, “The Detection of Influenza A and B Viruses in Clinical Specimens Using a Quartz Crystal Microbalance,” Journal of Virological Methods, Vol. 162, No. 1-2, 2009, pp. 14-21.
|
[17]
|
D. Li, J. Wang, R. Wang, Y. Li, D. Abi-Ghanem, L. Berghman, B. Hargis and H. Lu, “A Nanobeads Amplified QCM Immunosensor for the Detection of Avian Influenza Virus H5N1,” Biosensors and Bioelectronics, Vol. 26, 2011, pp. 4146-4154.
http://dx.doi.org/10.1016/j.bios.2011.04.010
|
[18]
|
T. W. Owen, R. O. Al-Kaysi, C. J. Bardeen and Q. Cheng, “Microgravimetric Immunosensor for Direct Detection of Aerosolized Influenza A Virus Particles,” Sensors and Actuators B, Vol. 126, 2007, pp. 691-699.
http://dx.doi.org/10.1016/j.snb.2007.04.028
|
[19]
|
R. Wang and Y. Li, “Hydrogel Based QCM Aptasensor for Detection of Avian Influenza Virus,” Biosensors and Bioelectronics, Vol. 42, 2013, pp. 148-155.
http://dx.doi.org/10.1016/j.bios.2012.10.038
|
[20]
|
S. D. Jay-asena, “Aptamers: An Emerging Class of Molecules that Rival Antibodies in Diagnostics,” Clinical Chemistry, Vol. 45, No. 9, 1999, pp. 1628-1650.
|
[21]
|
C. Tuerk and L. Gold, “Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase,” Science, Vol. 249, No. 4968, 1990, pp. 505-510.
http://dx.doi.org/10.1126/science.2200121
|
[22]
|
A. D. Ellington and J. W. Szostak, “In Vitro Selection of RNA Molecules that Bind Specific Ligands,” Nature, Vol. 346, No. 6287, 1990, pp. 818-822.
http://dx.doi.org/10.1038/346818a0
|
[23]
|
R. D. Jenison, S. C. Gill, A. Pardi and B. Polisky, “High-Resolution Molecular Discrimination by RNA,” Science, Vol. 263, No. 5152, 1994, pp. 1425-1429.
http://dx.doi.org/10.1126/science.7510417
|
[24]
|
K. Sefah, J. A. Phillips, X. Xiong, L. Meng, D. Van Simaeys, H. Chen, et al., “Nucleic Acid Aptamers for Biosensors and Bio-Analytical Applications,” Analyst, Vol. 134, 2009, pp. 1765-1775.
http://dx.doi.org/10.1039/b905609m
|
[25]
|
Z. Cui, Q. Ren, H. Wei, Z. Chen, J. Deng, Z. Zhang, et al., “Quantum Dot-Aptamer Nanoprobes for Recognizing and Labeling Influenza A Virus Particles,” Nanoscale, Vol. 3, 2011, pp. 2454-2457.
http://dx.doi.org/10.1039/c1nr10218d
|