Mineral phosphate solubilization activity of gluconacetobacter diazotrophicus under P-limitation and plant root environment
J. M. Crespo, J. L. Boiardi, M. F. Luna
DOI: 10.4236/as.2011.21003   PDF    HTML     8,053 Downloads   15,268 Views   Citations


The ability to solubilize insoluble inorganic pho- sphate compounds by Gluconacetobacter diazotrophicus was studied using different cul-ture approaches. Qualitative plate assays using tricalcium phosphate as the sole P-source showed that G. diazotrophicus produced solu-bilization only when aldoses were used as the C-source. Extracellular aldose oxidation via a pyrroloquinoline quinone-linked glucose dehy-drogenase (PQQ-GDH) is the main pathway for glucose metabolism in G. diazotrophicus. In batch cultures with 5 g l-1 of hydroxyapatite as the P-source and glucose as the C-source, more than 98% of insoluble P was solubilized. No solubilization was observed neither using glyc-erol nor culturing a PQQ-GDH mutant of G. di-azotrophicus. Solubilizaton was not affected by adding 100 mmol l-1 of MES buffer. Continuous cultures of G. diazotrophicus showed significant activities of PQQ-GDH either under C or P limi-tation. An intense acidification in the root envi-ronment of tomato and wheat seedlings inocu-lated with a G. diazotrophicus PAL5 was ob-served. Seedlings inoculated with a PQQ-GDH mutant strain of G. diazotrophicus showed no acidification. Our results suggest that G. di-azotrophicus is an excellent candidate to be used as biofertilizer because in addition to the already described plant growth-promoting abili-ties of this organism, it shows a significant mineral phosphate solubilization capacity.

Share and Cite:

Crespo, J. , Boiardi, J. and Luna, M. (2011) Mineral phosphate solubilization activity of gluconacetobacter diazotrophicus under P-limitation and plant root environment. Agricultural Sciences, 2, 16-22. doi: 10.4236/as.2011.21003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Goldstein, A.H. (1986) Bacterial mineral phosphate solubilization: Historical perspective and future prospects. American Journal of Alternative Agriculture, 1, 57-65.
[2] Sashidhar, B. and Podile, A.R. (2010) Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. Journal of Applied Microbiology, 109, 1-12.
[3] Rodriguez, H. and Fraga, R. (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319-339. doi:10.1016/S0734-9750(99)00014-2
[4] Gyaneshwar, P., Kumar, G.N., Parekh, L.J. and Poole, P.S. (2002) Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, 245, 83-93. doi:10.1023/A:1020663916259
[5] Intorne, A.C., de Oliveira, M.V., Lima, M.L., da Silva, J.F., Olivares, F.L. and de Souza Filho, G.A. (2009) Identifcation and characterization of Gluconacetobacter diazotrophicus mutants defective in the solubilization of phosphorus and zinc. Archives of Microbiology, 191, 477-483. doi:10.1007/s00203-009-0472-0
[6] Pedraza, R.O. (2008) Recent advances in nitrogen-fixing acetic acid bacteria. International Journal of Food Microbiology, 125, 25-35. doi:10.1016/j.ijfoodmicro.2007.11.079
[7] Luna, M.F., Galar, M.L., Aprea, J., Molinari M.L. and Boiardi, J.L. (2010) Colonization of sorghum and wheat by seed inoculation with Gluconacetobacter diazotrophicus. Biotechnology Letters, 32, 1071-1076. doi:10.1007/s10529-010-0256-2
[8] Maheshkumar, K.S., Krishnaraj, P.U. and Alagwadi, A.R. (1999) Mineral solubilising activity of Acetobacter diazotrophicus, a bacterium associated with sugarcane. Current Science, 76, 874-875.
[9] Galar, M.L. and Boiardi, J.L. (1995) Evidence for a membrane-bound pyrroloquinoline quinone-linked glucose dehydrogenase in Acetobacter diazotrophicus. Applied Microbiology and Biotechnology, 43, 713-716. doi:10.1007/BF00164778
[10] Luna, M.F., Bernardelli, C.E., Galar, M.L. and Boiardi, J.L. (2006) Glucose metabolism in batch and continuous cultures of Gluconacetobacter diazotrophicus PAL 3. Current Microbiology, 52, 163-168. doi:10.1007/s00284-005-4563-0
[11] Luna, M.F., Mignone, C.F. and Boiardi, J.L. (2000) The carbon source influences the energetic efficiency of the respiratory chain of N2-fixing Acetobacter diazotrophicus. Applied Microbiology and Biotechnology, 54, 564-569. doi:10.1007/s002530000425
[12] Stephan, M.P., Oliveira, M., Teixeira, K.R.S., Martínez-Drets, G. and D?bereiner, J. (1991) Physiology and dinitrogen fixation of Acetobacter diazotrophicus. FEMS Microbiology Letters, 77, 67-72. doi:10.1111/j.1574-6968.1991.tb04323.x
[13] Nautiyal, C.S. (1999) An effcient microbiological growth medium for screening phosphate solubilizing microorganisms,” Microbiology Letters, 170, 265-270. doi:10.1111/j.1574-6968.1999.tb13383.x
[14] Rodriguez, H., Gonzalez, T. and Selman, G. (2000) Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. Journal of Biotechnology, 84, 155-161. doi:10.1016/S0168-1656(00)00347-3
[15] Clesscerl, L.S., Greenberg, A.E. and Eaton, A.D. (1998) Standard methods for the examination of water and wastewater. 20th Edition, APHA-AWWA-WEF, Washington, DC.
[16] Matsushita, K. and Ameyama, M. (1982) D-Glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. Methods in Enzymology, 89, 149-155. doi:10.1016/S0076-6879(82)89026-5
[17] Matsushita, K., Shinagawa, E. and Ameyama, M. (1982) D-gluconate dehydrogenase from bacteria, 2-keto-D-gluconate yielding, membrane bound. Methods in Enzymology, 89, 187-193. doi:10.1016/S0076-6879(82)89033-2
[18] F?hraeus, G. (1957) The infection of clove root hairs by nodule bacteria studied by simple glass slide technique. Journal of General Microbiology, 16, 347-381
[19] Mehta, S. and Nautiyal, C.S. (2001) An efficient method for qualitative screening of phosphate solubilizing bacteria. Current Microbiology, 43, 51-55. doi:10.1007/s002840010259
[20] Olsthoorn, A.J. and Duine, J.A. (1998) On the mechanism and specificity of soluble, quinoprotein glucose dehydrogenase in the oxidation of aldose sugars. Biochemistry, 37, 13854-13861. doi:10.1021/bi9808868
[21] Attwood, M.M., van Dijken, J.P. and Pronk, J.T. (1991) Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus. Journal of Fermentation and Bioengineering, 72, 101-105. doi:10.1016/0922-338X(91)90317-A
[22] Luna, M.F. and Boiardi, J.L. (2008) Growth yields and glucose metabolism of N2-fixing Gluconacetobacter diazotrophicus at different culture pH values. World Journal of Microbiology and Biotechnology, 24, 587-590. doi:10.1007/s11274-007-9507-3
[23] Russell, J.B., and Cook, G.M. (1995) Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiology and Molecular Biology Reviews, 59, 48-62.
[24] Luna, M.F., Bernardelli, C.E., Mignone, C.F. and Boiardi, J.L. (2002) Energy generation by extracellular aldose oxidation in N2-fixing Gluconacetobacter diazotrophicus. Applied and Environmental Microbiology, 64, 2054-2056. doi:10.1128/AEM.68.4.2054-2056.2002
[25] Lugtenberg, B.J.J. Kravchenko, L.V. and Simons, M. (1999) Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environmental Microbiology, 1, 439-446. doi:10.1046/j.1462-2920.1999.00054.x
[26] Wang, P., Bi, S., Wang, S. and Ding, Q. (2006) Variation of wheat root exudates under aluminum stress. Journal of Agricultural and Food Chemistry, 54, 10040-10046. doi:10.1021/jf061249o

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.