[1]
|
M. J. Abolwitz and P. A. Clarkson, “Solitons, Nonlinear Evolution Equation and Inverse Scattering,” Cambridge University Press, Cambridge, 1991. http://dx.doi.org/10.1017/CBO9780511623998
|
[2]
|
C. Rogers and P. Wong, “On reciprocal B€ a Acklund Transformations of Inverse Scattering Schemes,” Physica Scripta, Vol. 30, 1984, pp. 10-14. http://dx.doi.org/10.1088/0031-8949/30/1/003
|
[3]
|
A. H. Khater, D. K. Callebaut, A. A. Abdalla, A. R. Shehata and S. M. Sayed, “Backlund Transformations and Exact Solutions for Self-Dual SU(3) Yang-Mills Equations,” IL Nuovo Cimento B, Vol. 114, 1999, pp. 1-10.
|
[4]
|
C. Qu, Y. Si and R. Liu, “On Affine Sawada-Kotera Equation,” Chaos, Solitons & Fractals, Vol. 15, No. 1, 2003, pp. 131-139. http://dx.doi.org/10.1016/S0960-0779(02)00121-2
|
[5]
|
O. C. Wright, “The Darboux Transformation of Some Manakov Systems,” Applied Mathematics Letters, Vol. 16, No. 5, 2003, pp. 647-652. http://dx.doi.org/10.1016/S0893-9659(03)00061-2
|
[6]
|
R. Hirota, “The Direct Method in Soliton Theory,” Cambridge University Press, Cambridge, 2004.
|
[7]
|
A. H. Khater, D. K. Callebaut and S. M. Sayed, “Exact Solutions for Some Nonlinear Evolution Equations which Describe Pseudospherical Surfaces,” Journal of Computational and Applied Mathematics, Vol. 189, No. 1-2, 2006, pp. 387-411. http://dx.doi.org/10.1016/j.cam.2005.10.007
|
[8]
|
S. K. Liu, Z. T. Fu and S. D. Liu, “Jacobi Elliptic Function Expansion Method and Periodic Wave Solutions of Nonlinear Wave Equations,” Physics Letters A, Vol. 289, No. 1-2, 2001, pp. 69-74. http://dx.doi.org/10.1016/S0375-9601(01)00580-1
|
[9]
|
E. Fan, “Extended Tanh-Function Method and Its Applications to Nonlinear Equations,” Physics Letters A, Vol. 277, 2000, pp. 212-219. http://dx.doi.org/10.1016/S0375-9601(00)00725-8
|
[10]
|
W. Malfliet and W. Hereman, “The Tanh Method I. Exact Solutions of Nonlinear Wave Equations,” Physica Scripta, Vol. 54, No. 6, 1996, pp. 569-575. http://dx.doi.org/10.1088/0031-8949/54/6/004
|
[11]
|
K. Chadan and P. C. Sabatier, “Inverse Problem in Quantum Scattering Theory,” Springer, New York, 1977. http://dx.doi.org/10.1007/978-3-662-12125-2
|
[12]
|
M. J. Ablowitz, S. Chakravarty and R. Halburd, “On Painlevé and Darboux-Halphen Type Equations, in the Painlevé Property, One Century Later,” In: R. Conte, Ed., CRM Series in Mathematical Physics, Springer, Berlin, 1998.
|
[13]
|
M. Elham Al-Ali, “Traveling Wave Solutions for a Generalized Kawahara and Hunter-Saxton Equations,” International Journal of Mathematical Analysis, Vol. 7, 2013, pp. 1647-1666.
|
[14]
|
S. M. Sayed, “The B?cklund Transformations, Exact Solutions, and Conservation Laws for the Compound Modified Korteweg-de Vries-Sine-Gordon Equations which describe Pseudospherical Surfaces,” Journal of Applied Mathematics, Vol. 2013, 2013, pp. 1-7. http://dx.doi.org/10.1155/2013/613065
|
[15]
|
V. B. Matveev and M. A. Salle, “Darboux Transformations and Solitons,” Springer-Verlag, Berlin, 1991. http://dx.doi.org/10.1007/978-3-662-00922-2
|
[16]
|
K. Tenenblat, “Transformations of Manifolds and Applications to Deferential Equations, Pitman Monographs and Surveys in Pure and Applied Mathematics 93,” Addison Wesley Longman, England, 1998.
|
[17]
|
A. M. Wazwaz, “New Compactons, Solitons and Periodic Solutions for Nonlinear Variants of the KdV and the KP Equations,” Chaos, Solitons & Fractals, Vol. 22, 2004, pp. 249-260. http://dx.doi.org/10.1016/j.chaos.2004.01.005
|
[18]
|
A. M. Wazwaz, “Two Reliable Methods for Solving Variants of the KdV Equation with Compact and Noncompact Structures,” Chaos, Solitons & Fractals, Vol. 28, No. 2, 2006, pp. 454-462. http://dx.doi.org/10.1016/j.chaos.2005.06.004
|
[19]
|
X. G. Geng and H. Wang, “Coupled Camassa-Holm Equations, N-Peakons and Infinitely Many Conservation Laws,” Journal of Mathematical Analysis and Applications, Vol. 403, 2013, pp. 262-271. http://dx.doi.org/10.1016/j.jmaa.2013.02.030
|
[20]
|
A. H. Khater, D. K. Callebaut and S. M. Sayed, “Conservation Laws for Some Nonlinear Evolution Equations which Describe Pseudo-Spherical Surfaces,” Journal of Geometry and Physics, Vol. 51, No. 3, 2004, pp. 332-352. http://dx.doi.org/10.1016/j.geomphys.2003.11.009
|
[21]
|
J. A. Cavalcante and K. Tenenblat, “Conservation Laws for Nonlinear Evolution Equations,” Journal of Mathematical Physics, Vol. 29, 1988, pp. 1044-1059. http://dx.doi.org/10.1063/1.528020
|
[22]
|
R. Beals, M. Rabelo and K. Tenenblat, “Backlund Transformations and Inverse Scattering Solutions for Some Pseudo-Spherical Surfaces,” Studies in Applied Mathematics, Vol. 81, 1989, pp. 125-134.
|
[23]
|
E. G. Reyes, “Conservation Laws and Calapso-Guichard Deformations of Equations Describing Pseudo-Spherical Surfaces,” Journal of Mathematical Physics, Vol. 41, 2000, pp. 2968-2979. http://dx.doi.org/10.1063/1.533284
|
[24]
|
E. G. Reyes, “On Geometrically Integrable Equations and Hierarchies of Pseudo-Spherical Type,” Contemporary Mathematics, Vol. 285, 2001, pp. 145-156. http://dx.doi.org/10.1090/conm/285/04740
|
[25]
|
W. T. Wu, “Polynomial Equations-Solving and Its Applications,” Algorithms and Computation, Beijing, 1994, pp. 1-9.
|
[26]
|
M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, “The Inverse Scattering Transform-Fourier Analysis for Nonlinear Problems,” Studies in Applied Mathematics, Vol. 53, 1974, pp. 249-257.
|
[27]
|
S. S. Chern and K. Tenenblat, “Pseudospherical Surfaces and Evolution Equations,” Studies in Applied Mathematics, Vol. 74, 1986, pp. 55-83.
|
[28]
|
K. Konno and M. Wadati, “Simple Derivation of Backlund Transformation from Riccati Form of Inverse Method,” Progress of Theoretical Physics, Vol. 53, 1975, pp. 1652-1656. http://dx.doi.org/10.1143/PTP.53.1652
|
[29]
|
R. Sasaki, “Soliton Equations and Pseudospherical Surfaces,” Nuclear Physics B, Vol. 154, 1979, pp. 343-357. http://dx.doi.org/10.1016/0550-3213(79)90517-0
|