Synthesis of Agnps By Bacillus Cereus Bacteria and Their Antimicrobial Potential
Anuradha Prakash, Seema Sharma, Naheed Ahmad, Ashok Ghosh, Preety Sinha
DOI: 10.4236/jbnb.2011.22020   PDF    HTML     7,582 Downloads   14,830 Views   Citations

Abstract

In the present work silver nanoparticles (AgNPs) were synthesized extracellularly by bacteria Bacillus cereus collected from the riverine belt of Gangetic Plain of India. The microbes were isolated, screened and characterized by morphological and biochemical analyses. The silver resistant strain was exposed to different concentrations of silver salt (AgNO3). UV-visible spectrum of the supernatant of cell culture showed absorbance peak of AgNPs at ~ 435nm.The shape and size of AgNPs were ascertained by High Resolution Transmission Electron Micrography (HRTEM), X-ray diffraction (XRD) and Energy Dispersive spectroscopy (EDS). Average size of the synthesized AgNPs was found to be in the range of 10-30 nm with spherical shape. AgNPs were tested against antibacterial potential of some common human pathogens.

Share and Cite:

Prakash, A. , Sharma, S. , Ahmad, N. , Ghosh, A. and Sinha, P. (2011) Synthesis of Agnps By Bacillus Cereus Bacteria and Their Antimicrobial Potential. Journal of Biomaterials and Nanobiotechnology, 2, 155-161. doi: 10.4236/jbnb.2011.22020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] [1] P. K. Stoimenov, R. L. Klinger, G. L. Marchin and K. J. Klabunde, “Metal Oxide Nanoparticles as Bactericidal Agents.” Langmuir, Vol.18, 2002, pp. 6679-6686. doi:10.1021/la0202374
[2] [2] R. M. Streicher , M. Schmidt , S. Fiorito, “Nanosurfaces and Nanostructures for Artificial Orthopedic Implants,” Nanomedicine, Vol.2, 2007, pp. 861-874. doi:10.2217/17435889.2.6.861
[3] [3] R. Langer, “Perspective: Drug Delivery-Drug on Target,” Science, Vol. 293, No. 5527, 2001, pp. 58-59. doi:10.1126/science.1063273
[4] [4] A. Ahmad, S. Senapati, R. Kumar and M. Sastry, “Ex-tracellular Biosynthesis of Monodisperse Gold Nanopar-ticles by a Novel Extremophilic Actinomycete, Thermo-monospora sp,” Langmuir, Vol.19, 2003, pp. 3550-3553. doi:10.1021/la026772l
[5] [5] B. Nair and T. Pradeep, “Coalescence of Nanoclusters and the Formation of Submicron Crystallites Assisted by Lactobacillus Strains,” American Chemical Social, Vol.2, 2002, pp. 293-298.
[6] [6] B. L. V. Prasad, S. K. Arumugam, T. Bala and M. Sastry, “Solvent Adaptable Silver Nanoparticles,” Langmuir, Vol. 21, No. 3, 2005, pp. 822-826. doi:10.1021/la047707+
[7] [7] A. Kumar, S. Mandal, P. R. SelvaKannan, R. Pasricha, A. B. Mandale and M. Sastry, “Investigation into the Interac-tion between Surface Bound Alkylamines and Gold Nano- particles,” Langmuir, Vol. 19, No. 15, 2003, pp. 6277-6282. doi:10.1021/la034209c
[8] [8] K. A. Bogle, S. D. Dhole and V. N Bhoraskar, “Silver Nanoparticles: Synthesis and Size Control by Electron Ir-radiation,” Nanotech, Vol. 17, 2006, pp. 3204-3208. doi:10.1088/0957-4484/17/13/021
[9] [9] J. C. Lin, W. C Tsai and W.S Lee, “The Improved Elec-trical Contact between a Metal and Porous Silican by Deposition Using a Supercritical Fluid,” Nanotech, Vol. 17, 2006, pp. 2968-2971. doi:10.1088/0957-4484/17/12/024
[10] [10] L. Balogh, D. R Swanson, D. R Tomalia, G. L Hagnauer and A. T. McManus, “Dendrimer-Silver Complexes and Nanocomposites as Antimicrobial Agents,” Nanoletters, Vol.1, 2001, doi:10.1021/nl005502p
[11] [11] X. Shi, T. R. Ganser, K. San, L. P. Balogh and J. R. Baker Jr, “Characterization of Crystalline Dendrimer- Stabilized Gold Nanoparticles,” Nanotechnology, Vol. 17, 2006, pp. 1072-1076. doi:10.1088/0957-4484/17/4/038
[12] [12] C. N. Lok, “Proteomic Analysis of the Mode of Antibac-terial Action of Silver Nanoparticles,” Journal Proteome Research, Vol. 5, 2005, pp. 916-924. doi:10.1021/pr0504079
[13] [13] S. Pal., Y. Tak, and J. M. Song, “Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacte-rium Escherichia Coli,” Applied Environment, Microbi-ology, Vol.73, 2007, pp. 1712-1720. doi:10.1128/AEM.02218-06
[14] [14] C. T. Dameron, R. N. Reese, R. K. Mehra, A. R. Katari, P. J. Carroll, M. L. Steigerwald, L. E. Brus and D. R., “Winge. Biosynthesis of Cadmium Sulphide Quantum Semicon-ductor Crystallites,” Nature, Vol.338, 1989, pp. 596-597. doi:10.1038/338596a0
[15] [15] J. M. Boyce, “Reevaluation of the Ability of the Stan-dardized Disk Diffusion Test to Detect Methicillin Resis-tant Strains of Staphylococcus Aureus,” Journal of Clini- cal Microbiology, Vol.19, 1984, pp. 813-817.
[16] [16] W. Lawerence, A. L Barry., R. Otoole and J. Sherris, “Re-liability of the Kirby-Bauer Disc Diffusion Method for Se-lecting Methicilin Resistant Strains of Staphylococcus Aureus,” Applied Micrology, Vol.24, 1972, pp. 240-247.
[17] [17] A. K. Jha, Kamlesh Prasad and K. Prasad, “A Green Low Cost Biosynthesis of Sb2O3 Nanoparticles,” Biochemical English Journal, Vol.43, No.3, 2009, pp. 303-306. doi:10.1016/j.bej.2008.10.016
[18] [18] A. Gole, C. Dash, V. Ramachandran, S. R. Sainkar, A. B. Mandale, M. Rao and M. Sastry, “Pepsin-Gold Colloid Conjugates: Preparation, Characterization, and Enzymatic Activity,” Langmuir, Vol.17, No.5, 2001, pp. 1674-1679. doi:10.1021/la001164w
[19] [19] S. Mandal, S. Phadtare and M. Sastry, “Interfacing Biol-ogy with Nanoparticles,” Current Applied Physics, Vol.5, No.2, 2005, pp. 118-127. doi:10.1016/j.cap.2004.06.006
[20] [20] M. Sastry, A. Ahmad, M. IslamKhan and R. Kumar, “Bi-ological Synthesis of Metal Nanoparticles Using Fungi and Actinomycetes,” Current Science, Vol.85, No.2, 2003, pp. 162-170.
[21] [21] N. Vigneshwaran, N. M. Ashtaputre, P. V. Varadarajan, R. P. Nachane, K. M. Paralikar and R. H. Balasubramanya, “Biological Synthesis of Silver Nanoparticles Using the Fungus Aspergillus Flavus,” Materials Letter, Vol.61, 2007, pp. 1413-1418. doi:10.1016/j.matlet.2006.07.042
[22] [22] Y. Matsumura, K Yoshikata, S. Kunisaki, and T. Tsuchido, “Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate,” Applied Envi-ronment Microbiology, Vol.69, No.7, 2003, pp. 4278-4281.
[23] [23] A. Gupta, M. Maynes and S. Silver, “Effects of Halides on Plasmid Mediated Silver Resistance in Escherichia Coli,” Applied Environment Micrology, Vol.64, 1998, pp. 5042-5045.
[24] [24] Q. L. Feng , J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim and J. O. Kim, “A Mechanistic Study of the Antibacterial Ef-fect of Silver Ions on Escherichia Coli and Staphylococcus aureus,” Journal of Biomedical Materials Research, Vol.52, No.4, 2000, pp.662-668. doi:10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
[25] [25] M. Singh, S. Singh, S. Prasad and I. S. Gambhir, “Nano-Technology in Medicine and Antibacterial Effect of Sil-ver Nanoparticles,” Digest Journal of Nanomaterials and Biostrstructures, Vol.3, 2008, pp. 115-122.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.