Cortical columns (barrels) display normal size in the brain’s primary somatosensory cortex of mice carrying null mutations of the insulin receptor substrate 1 gene: A preliminary report
Marta López-Santibáñez Guevara, Eileen Uribe-Querol, Alma Lilia Fuentes Farías, Esperanza Meléndez-Herrera, Agustine Joseph D’Ercole, Gabriel Gutiérrez-Ospina
Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., México.
Departamento de Zoología, Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México.
Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, USA.
División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, México D.F., México.
DOI: 10.4236/abb.2013.410125   PDF    HTML     2,822 Downloads   4,265 Views  


Circuits in barrels of the rodent brain’s primary somatosensory (S1) cortex build up following constructivist rules. Previous evidence in mice supports that the precise addition of barrel neuropil is promoted by insulin-like growth factor-1 (IGF-1). The signaling cascades mediating this response remain undetermined. To address whether the effects of IGF-1 upon the growth of S1 circuits are mediated by insulin receptor substrate-1 (IRS-1), we studied barrel size in adult mice having the IRS-1 gene knocked out (IRS-1 ko). Our results reveal that barrel size is similar between wild type and IRS-1 ko mice suggesting that IRS-1 is not essential for barrel circuitry growth. Hence, investigations aimed at exploring other substrates activated by IGF-1, namely IRS-2 and IRS-4, are needed to reveal signaling pathways that mediate the precise addition of S1 neuronal circuitry. 

Share and Cite:

Guevara, M. , Uribe-Querol, E. , Fuentes Farías, A. , Meléndez-Herrera, E. , D’Ercole, A. and Gutiérrez-Ospina, G. (2013) Cortical columns (barrels) display normal size in the brain’s primary somatosensory cortex of mice carrying null mutations of the insulin receptor substrate 1 gene: A preliminary report. Advances in Bioscience and Biotechnology, 4, 945-948. doi: 10.4236/abb.2013.410125.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Bennet, M.R., Gibson, W.G. and Lemon, G. (2002) Neuronal cell death, nerve growth factor and neurotrophic models: 50 years on. Autonomic Neuroscience: Basic & Clinical, 95, 1-23.
[2] Blankenship, A.G. and Feller, M.B. (2010) Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nature Reviews Neuroscience, 11, 18-29.
[3] Buss, R.R., Sun, W. and Oppenheim, R.W. (2006) Adaptive roles of programmed cell death during nervous system development. Annual Review of Neuroscience, 29, 1-35.
[4] Zweifel, L.S., Kuruvilla, R. and Ginty, D.D. (2005) Functions and mechanisms of retrograde neurotrophin signalling. Nature Reviews Neuroscience, 6, 615-625.
[5] Konstantinidou, A.D., Silos-Santiago, I., Flaris, N. and Snider, W.D. (1995) Development of the primary afferent projection in human spinal cord. Journal of Comparative Neurology, 354, 11-12.
[6] Silos-Santiago, I., Jeng, B. and Snider, W.D. (1995) Sensory afferents show appropriate somatotopy at the earliest stage of projection to dorsal horn. Neuroreport, 6, 861-865.
[7] Pomeroy, S.L., LaMantia, A.S. and Purves, D. (1990) Postnatal construction of neural circuitry in the mouse olfactory bulb. Journal of Neuroscience, 10, 1952-1966.
[8] Valle-Leija, P., Blanco-Hernández, E., Drucker-Colín, R., Gutiérrez-Ospina, G. and Vidaltamayo, R. (2012) Supernumerary formation of olfactory glomeruli induced by chronic odorant exposure: A constructivist expression of neural plasticity. PloS ONE, 7, e35358.
[9] Crowley, J.C. and Katz, L.C. (2002) Ocular dominance development revisited. Current Opinion in Neurobiology, 12, 104-109.
[10] Agmon, A., Yang, L.T., O’Dowd, D.K. and Jones, E.G. (1993) Organized growth of thalamocortical axons from the deep tier of terminations into layer IV of developing mouse barrel cortex. Journal of Neuroscience, 13, 5365-5382.
[11] Uribe-Querol, E., Martínez-Martínez, E., Hernández, L.R., Padilla Cortés, P., Merchant-Larios, H. and, Gutiérrez-Ospina, G. (2013) Selective and constructive mechanisms contribute to neural circuit formation in the barrel cortex of the developing rat. Advances in Bioscience and Biotechnology, 4, 785-797.
[12] Catalano, S.M., Robertson, R.T. and Killackey, H.P. (1996) Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex. Journal of Comparative Neurology, 367, 36-53.<36::AID-CNE4>3.0.CO;2-K
[13] Riddle, D., Richards, A., Zsuppan, F. and Purves, D. (1992) Growth of the rat somatic sensory cortex and its constituent parts during postnatal development. Journal of Neuroscience, 12, 3509-3524.
[14] Rebsam, A., Seif, I. and Gaspar, P. (2005) Dissociating barrel development and lesion-induced plasticity in the mouse somatosensory cortex. Journal of Neuroscience, 25, 706-710.
[15] Gutiérrez-Ospina, G., Calikoglu, A.S., Ye, P., D’Ercole and A.J. (1996) In vivo effects of insulin-like growth factor-I on the development of sensory pathways: analysis of the primary somatic sensory cortex (S1) of transgenic mice. Endocrinology, 137, 5484-5492.
[16] Gutiérrez-Ospina, G., Uribe-Querol, E., Sánchez, N., Geovannini, H., Padilla, P. and Hernández-Echeagaray, E. (2004) Similar synapse density in layer IV columns of the primary somatosensory cortex of transgenic mice with different brain size: Implications for mechanisms underlying the differential allocation of cortical space. Brain Behavior and Evolution, 64, 61-69.
[17] Quartz, S.R. and Sejnowski, T.J. (1997) The neural basis of cognitive development: A constructivist manifesto. The Behavioral and Brain Sciences, 20, 537-596.
[18] Hodge, R.D., D’Ercole, A.J. and O’Kusky, J.R. (2005) Increased expression of insulin-like growth factor-I (IGFI) during embryonic development produces neocortical overgrowth with differentially greater effects on specific cytoarchitectonic areas and cortical layers. Developmental Brain Research, 154, 227-237.
[19] López-Bendito, G. and Molnár, Z. (2003) Thalamocortical development: How are we going to get there? Nature Reviews Neuroscience, 4, 276-289.
[20] White, M.F. (1997) The insulin signallling system and the IRS proteins. Diabetologia, 40, S2-S17.
[21] Mardilovich, K., Pankratz, S.L. and Shaw, L.M. (2009) Expression and functions of the insulin receptor substrate proteins in cancer. Cell Communication and Signaling, 7, 14.
[22] Withers, D.J. (2001) Insulin receptor substrate proteins and neuroendocrine function. Biochemical Society Transactions, 29, 525-529.
[23] Giovannone, B., Scaldaferre, M.L., Federici, M., Porzio, O., Lauro, D., Fusco, A., Sbraccia, P., Borboni, P., Lauro, R. and Sesti, G. (2000) Insulin receptor substrate (IRS) transduction system: Distinct and overlapping signaling potential. Diabetes/Metabolism: Research and Reviews, 16, 434-441.<::AID-DMRR159>3.0.CO;2-8
[24] Folli, F., Bonfanti, L., Renard, E., Kahn, C.R. and Merighi, A. (1994) Insulin receptor substrate-1 (IRS-1) distribution in the rat central nervous system. Journal of Neuroscience, 14, 6412-6422.
[25] Pete, G., Fuller, C.R., Oldham, J.M., Smith, D.R., D’Ercole, A.J., et al. (1999) Postnatal growth responses to insulin-like growth factor I in insulin receptor substrate1-deficient mice. Endocrinology, 140, 5478-5487.
[26] Ye, P., Li, L., Lund, P.K. and D’Ercole, A.J. (2002) Deficient expression of insulin receptor substrate-1 (IRS-1) fails to block insulin-like growth factor-I (IGF-I) stimulation of brain growth and myelination. Developmental Brain Research, 136, 111-121.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.