Proposal on Tunneling Effect between Quantum Hall States


In the integer and fractional quantum Hall effects, the electric current flows through a thin layer under the strong magnetic field. The diagonal resistance becomes very small at integer and specific fractional filling factors where the electron scatterings are very few. Accordingly the coherent length is large and therefore a tunneling effect of electrons may be observed. We consider a new type of a quantum Hall device which has a narrow potential barrier in the thin layer. Then the electrons flow with tunneling effect through the potential barrier. When the oscillating magnetic field is applied in addition to the constant field, the voltage steps may appear in the curve of voltage V versus electric current I. If the voltage steps are found in the experiment, it is confirmed that the 2D electron system yields the same phenomenon as that of the ac-Josephson effect in a superconducting system. Furthermore the step V is related to the transfer charge Q as V = (hf)/Q where f is the frequency of the oscillating field and h is the Planck constant. Then the detection of the step V determines the transfer charge Q. The ratio Q/e (e is the elementary charge) clarifies the origin of the transfer charge. Many conditions are required for us to observe the tunneling phenomenon. The conditions are examined in details in this article.

Share and Cite:

S. Sasaki, "Proposal on Tunneling Effect between Quantum Hall States," Journal of Modern Physics, Vol. 4 No. 9A, 2013, pp. 1-7. doi: 10.4236/jmp.2013.49A001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] K. V. Klitzing, G. Dorda and M. Pepper, Physical Review Letters, Vol. 11, 1980, pp. 494-497. doi:10.1103/PhysRevLett.45.494
[2] H. L. Stormer, “Nobel Lectures, Physics 1996-2000,” World Scientific, World Scientific Publishing Co. Pte. Ltd., pp. 295-325, 321.
[3] W. Pan, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin and K. W. West, Physical Review Letters, Vol. 88, 2002, Article ID: 176802. doi:10.1103/PhysRevLett.88.176802
[4] S. Sasaki, e-Journal of Surface Science and Nanotechnology, Vol. 8, 2010, pp. 121-124. doi:10.1380/ejssnt.2010.121
[5] R. B. Laughlin, Physical Review B, Vol. 27, 1983, pp. 3383-3389.
[6] R. B. Laughlin, Physical Review Letters, Vol. 50, 1983, pp. 1395-1398. doi:10.1103/PhysRevLett.50.1395
[7] F. D. M. Haldane, Physical Review Letters, Vol. 51, 1983, pp. 605-608. doi:10.1103/PhysRevLett.51.605
[8] B. I. Halperin, Physical Review Letters, Vol. 52, 1984, pp. 1583-1586. doi:10.1103/PhysRevLett.52.1583
[9] S. M. Girvin, Physical Review B, Vol. 29, 1984, pp. 6012-6014. doi:10.1103/PhysRevB.29.6012
[10] S. C. Zhang, T. H. Hansson and S. Kivelson, Physical Review Letters, Vol. 62, 1989, p. 980. doi:10.1103/PhysRevLett.62.980.3
[11] J. K. Jain, Physical Review Letters, Vol. 63, 1989, pp. 199-202.
[12] J. K. Jain, Physical Review B, Vol. 41, 1990, pp. 7653-7665. doi:10.1103/PhysRevB.41.7653
[13] R. K. Kamilla, X. G. Wu and J. K. Jain, Physical Review Letters, Vol. 76, 1996, pp. 1332-1335. doi:10.1103/PhysRevLett.76.1332
[14] B. Blok and X. G. Wen, Physical Review B, Vol. 42, 1990, pp. 8133-8144. doi:10.1103/PhysRevB.42.8133
[15] S. Sasaki, Advances in Condensed Matter Physics, Vol. 2012, 2012, Article ID: 281371. doi:10.1155/2012/281371
[16] S. Sasaki, Journal of Physics: Conference Series, Vol. 100, 2008, Article ID: 042022.
[17] S. Sasaki, “Binding Energies and Spin Polarizations of Fractional Quantum Hall States,” In: C. P. Norris, Ed., Surface Science: New Research, Nova Science Publishers, Hauppauge, 2006, pp. 103-161.
[18] S. Sasaki, Surface Science, Vol. 566, 2004, pp. 1040-1046.
[19] S. Sasaki, Surface Science, Vol. 532, 2003, pp. 567-576.
[20] S. Sasaki, Proceedings of the 25th International Conference on the Physics of Semiconductors, Springer, New York, 2001, p. 925.
[21] S. Sasaki, Physica B, Vol. 281, 2000, pp. 838-839.
[22] E. Banghert, K. von Klitzing and G. Landwehr, Proceeding of the 12th International Conference on the Physics of Semiconductors, Stuttgart, 15-19 July 1974, p. 714.
[23] D. A. Broido and L. J. Sham, Physical Review B, Vol. 31, 1985, pp. 888-892.
[24] R. Wagner, “G-Factor, Effective Mass and Spin Susceptibility of a 2-Dimensional Electron Gas,” Master Thesis, University of Basel, Basel, 2009.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.