Recent interests on positron (e+ ), positronium (Ps) and antihydrogen (H)
Hasi Ray
DOI: 10.4236/ns.2011.31005   PDF    HTML     5,188 Downloads   9,721 Views   Citations


A brief survey is made to highlight the recent interests in positron, positronium and antimatter physics. Positron is the first antiparticle observed which was predicted by Dirac. Positronium is itself its antiparticle and bi-positronium molecule is recently observed in laboratory which was predicted by Wheeler in 1946. The simplest antiatom i.e. antihydrogen is observed in the laboratory and the process to achieve the stable confinement of antihydrogen within the trap are in progress to test the standard model.

Share and Cite:

Ray, H. (2011) Recent interests on positron (e+ ), positronium (Ps) and antihydrogen (H). Natural Science, 3, 42-47. doi: 10.4236/ns.2011.31005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Dirac P. A. M. (1928) The quantum theory of the electron, Proceedings of the Royal Society A, 117, 610-624. doi:10.1098/rspa.1928.0023
[2] Anderson, C.D. (1933) The positive electron, Physical Review A, 43, 491-494. doi:10.1103/PhysRev.43.491
[3] Mohorovicic, S. (1934) Moglichkeit neuer elements und ihre bedeutung fur die astrophysik. Astronomische Nachrichten, 253, 93-108. doi:10.1002/asna.19342530402
[4] Ruark, A.E. (1945) Positronium. Physical Review, Letter to the Editor, 68, p. 278.
[5] Deutsch, M. (1951) Evidence for the formation of Positronium in gases. Physical Review, 82.
[6] Cassidy D. B. and Mills A. P. Jr. (2007) The production of molecular positronium, Nature Letters, 449 195-197. doi:10.1038/nature06094
[7] Cassidy, D.B., Deng, S.H.M. and Mills, A.P.Jr. (2007) Evidence of positronium molecule formation at a metal surface, Physical Review A, 76, 1-6. doi:10.1103/PhysRevA.76.062511
[8] Schrader, D.M. (2004) Symmetry of dipositronium Ps2, Physical Review Letters, 92, 043401(1-4).
[9] Bubin, S. and Adamowicz, L. (2006) Nonrelativistic variational calculations of the positronium molecule and the positronium hydride, Physical Review A, 74 052502(1-5).
[10] Mills, A.P.Jr. (1981) Observation of the positronium negative ion, Physical Review Letters, 46 717-720. doi:10.1103/PhysRevLett.46.717
[11] Wheeler J.A., Polyelectrons (1946) Annals of the New York Academy of Sciences, 48, 219-238. doi:10.1111/j.1749-6632.1946.tb31764.x
[12] Hijmans, T.W. (2002) Particle physics: Cold antihydrogen, News and Views, Nature, 419, 439-440. doi:10.1038/419439a
[13] Barbara, G.L. (2003) Second CERN group produces cold atoms of antihydrogen. Search and Discovery, Physics Today, 14-16.
[14] Usukura, J., Varga, K. and Suzuki, Y. (1998) Signature of the existence of positronium molecule, Physics Review A, 58, 1918-1931. doi:10.1103/PhysRevA.58.1918
[15] Ho, Y.K. (1986) Binding energy of positronium molecule, Physical Review A, 33, 3584-3587. doi:10.1103/PhysRevA.33.3584
[16] Mills, A. P., Jr., private communication.
[17] Hylleraas, E.A. and Ore, A. (1947) Binding energy of positronium molecule, Physical Review, 71, 493-496. doi:10.1103/PhysRev.71.493
[18] Mezei, Zs., Mitroy, J., Lovas, R.G. and Varga, K. (2001) Properties of some five-particle systems, Physical Review A, 64, 032501(1-10).
[19] Rienzi, J.D. and Drachman, R.J. (2002) Resonances in positronium hydride, Physical Review A, 65, 032721(1-7).
[20] Frolov, A.M. and Smith, V.H.Jr. (1997) Bound-state properties, positron annihilation rates and hyperfine structure, Physical Review A, 55, 2662-2673. doi:10.1103/PhysRevA.55.2662
[21] Albus, A.P., Giorgini, S., Illuminati, F. and Viverit, L. (2002) Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures, Journal of Physics B Letters, 35, L511-L519.
[22] Platzman, P.M. and Mills, A.P.Jr. (1994) Possibilities of Bose condensation of positronium. Physics Review B, 49, 454-458. doi:10.1103/PhysRevB.49.454
[23] Adhikari, S.K. (2002) Positronium-positronium interaction: resonance, scattering length, and Bose-Einstein condensation. Physics Letters A, 294, 308-313. doi:10.1016/S0375-9601(02)00128-7
[24] Amoretti, M., Amsler, C., Bonomi, G., Bouchta, A., Bowe, P., Carraro, C., Cesar, C.L., Charlton, M., Collier M.J.T., Doser, M., Filippini, V., Fine, K.S., Fontana, A., Fujiwara, M.C., Funakoshi, R., Genova, P., Hangst, J.S., Hayano, R.S., Holzscheiter, M.H., Jrgensen, L.V., Lagomarsino, V., Landua, R., Lindelf, D., Lodi, R.E., Macr, M., Madsen, N., Manuzio, G., Marchesotti, M., Montagna, P., Pruys, H., Regenfus, C., Riedler, P., Rochet, J., Rotondi, A., Rouleau, G., Testera, G., Variola, A., Watson, T.L.,
[25] The Origin Of The Standard Model: The Genesis Of Four Quark And Lepton Species, Parity Violation, The Electroweak Sector, Color Su(3), Three Visible G; Stephen Blaha, Publisher: Pingree-hill Publishing (Paperback - Nov 2007).
[26] Please see website:
[27] Walz, J., Fendel, P., Herrmann, M., K?nig, M., Pahl, A., Pittner, H., Schatz, B. and H?nsch, T.W. (2003) Towards laser spectroscopy of antihydrogen. Journal of Physics B: Atomic, Molecular and Optical Physics, 36, p. 649. doi:10.1088/0953-4075/36/3/321
[28] Walz, J. and H?nsch, T. (2004) A proposal to measure antimatter gravity using Ultracold Antihydrogen atoms: fundamental physics on the ISS, General Relativity and Gravitation, 36, 561-570. doi:10.1023/B:GERG.0000010730.93408.87
[29] Patrice, P., Laszlo, L., Jean-Michel, R., Valentin, B., Michael, C., Aline, C., Olivier, D., Pierre, D., Tomoko, M., Nicilas, R. and Yves, S. (2009) A mini linac based positron source. Physica Status Solidi C, 6, 2462-2464. doi:10.1002/pssc.200982123
[30] Karen C. Fox, The Big Bang Theory: What It Is, Where It Came From, and Why It Works JOHN WILEY & SONS, INC., New York, 2002.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.