Biodiesel Production from Spirulina-Platensis Microalgae by In-Situ Transesterification Process


This research investigates the effect of reaction variables that strongly affect the cost of biodiesel production from non-edible Spirulina-Platensis microalgae lipids, and use the acid-catalyzed in situ transesterification process. Experiments were designed to determine how variations in volume of reacting methanol, the concentration of an acid catalyst, time, temperature and stirring affected the biodiesel yield. The total lipid content of Spirulina-Platensis microalgae was obtained to be 0.1095g/g biomass. The weight of the by-product glycerol obtained was used to predict the percentage yield conversion of microalgae oil biodiesel. Best results (84.7%), a yield of fatty acid methyl ester (FAME), were obtained at 100% (wt./wt.oil) catalyst concentration, 80 ml methanol volumes, 8 h reaction time and 65℃ reaction temperature with continuous stirring at 650 rpm. Properties of the produced biodiesel were measured according to EN 14214 standards.

Share and Cite:

El-Shimi, H. , Attia, N. , El-Sheltawy, S. and El-Diwani, G. (2013) Biodiesel Production from Spirulina-Platensis Microalgae by In-Situ Transesterification Process. Journal of Sustainable Bioenergy Systems, 3, 224-233. doi: 10.4236/jsbs.2013.33031.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. M. Huang, H. N. Zhou and L. Lin, “Biodiesel: An Alternative to Conventional Fuel,” Energy Procedia, Vol. 16, Pt. C, 2012, pp. 1874-1885. doi:10.1016/j.egypro.2012.01.287
[2] A. Demirbas, “Biofuels Securing the Planet’s Future Energy Needs,” Energy Conversion and Management, Vol. 50, No. 9, 2009, pp. 2239-2249. doi:10.1016/j.enconman.2009.05.010
[3] V. K. Wermelinger, S. Araujo, S. Hamacher and L. F. Scavarda, “Economic Assessment of Biodiesel Production from Waste Frying Oils,” Bioresource Technology, Vol. 101, No. 12, 2010, pp. 4415-4422. doi:10.1016/j.biortech.2010.01.101
[4] L. Simasatitkul, R. Gani and A. Arpornwichanopa, “Optimal Design of Biodiesel Production Process from Waste Cooking Palm Oil,” Procedia Engineering, Vol. 42, 2012, pp. 1292-1301.
[5] S. Nagarajan, S. K. Chou, S. Y. Cao, C. Wu and Z. Zhou, “An Updated Comprehensive Techno-Economic Analysis of Algae Biodiesel,” Bioresource Technology, 2012. doi:10.1016/j.biortech.2012.11.108
[6] C.-L. Cheng, P.-Y. Che, B.-Y. Chen, W.-J. Lee, C.-Y. Lin and J.-S. Chang, “Biobutanol Production from Agricultural Waste by an Acclimated Mixed Bacterial Microflora,” Applied Energy, Vol. 100, 2012, pp. 3-9. doi:10.1016/j.apenergy.2012.05.042
[7] C. S. Jones and S. P. Mayfieldt, “Algae Biofuels: Versatility for the Future of Bioenergy,” Current Opinion in Biotechnology, Vol. 23, No. 3, 2012, pp. 346-351. doi:10.1016/j.copbio.2011.10.013
[8] K. Ramezani, S. Rowshanzamir and M. H. Eikani, “Castor oil Transesterification Reaction: A Kinetic Study and Optimization of Parameters,” Energy, Vol. 35, No. 10, 2010, pp. 4142-4148. doi:10.1016/
[9] B. B. Venu and V. G. Vaibhav, “Biodiesel Production from Renewable Feed Stocks: Status and Opportunities,” Renewable and Sustainable Energy Reviews, Vol. 16, No. 7, 2012, pp. 4763-4784. doi:10.1016/j.rser.2012.04.010
[10] F. Delrue, P.-A. Setier, C. Sahut, L. Cournac, A. Roubaud, G. Peltier and A.-K. Froment, “An Economic, Sustainability, and Energetic Model of Biodiesel Production from Microalgae,” Bioresource Technology, Vol. 111, 2012, pp. 191-200. doi:10.1016/j.biortech.2012.02.020
[11] Y. Chisti, “Biodiesel from Microalgae,” Biotechnology Advances, Vol. 25, No. 3, 2007, pp. 294-306. doi:10.1016/j.biotechadv.2007.02.001
[12] N. Nagle and P. Lemke, “Production of Methyl Ester Fuels from Microalgae,” Applied Biochemistry and Biotechnology, Vol. 24-25, No. 1, 1990, pp. 355-361. doi:10.1007/BF02920259
[13] X. Miao and Q. Wu, “Biodiesel Production from Heterotrophic Microalgal Oil,” Bioresource Technology, Vol. 97, No. 6, 2006, pp. 841-846. doi:10.1016/j.biortech.2005.04.008
[14] S. A. Abo El-Enin, N. K. Attia, N. N. El-Ibiari, G. I. ElDiwani and K. M. El-Khatib, “In-Situ Transesterification of Rapeseed and Cost Indicators for Biodiesel Production,” Renewable and Sustainable Energy Reviews, Vol. 18, 2013, pp. 471-477. doi:10.1016/j.rser.2012.10.033
[15] P. Chitra, P. Venkatachalam and A. Sampathrajan, “Optimisation of Experimental Conditions for Biodiesel Production from Alkali-Catalysed Transesterification of Jatropha curcus Oil,” Energy Sustainable Development, Vol. 9, No. 3, 2005, pp. 13-18. doi:10.1016/S0973-0826(08)60518-9
[16] Y. Zhang, M. A. Dub, D. D. McLean and M. Kates, “Biodiesel Production from Waste Cooking Oil: 2. Economic Assessment and Sensitivity Analysis,” Bioresource Technology, Vol. 90, No. 3, 2003, pp. 229-240. doi:10.1016/S0960-8524(03)00150-0
[17] S. Gryglewicz, “Rapeseed Oil Methyl Esters Preparation Using Heterogeneous Catalysts,” Bioresource Technology, Vol. 70, No. 3, 1999, pp. 249-253. doi:10.1016/S0960-8524(99)00042-5
[18] S. Furuta, H. Matsuhashi and K. Arata, “Biodiesel Fuel Production with Solid Super Acid Catalysis in fixed Bed Reactor under Atmospheric Pressure,” Catalyst Communication, Vol. 5, No. 12, 2004, pp. 721-723. doi:10.1016/j.catcom.2004.09.001
[19] H. Noureddini, X. Gao and R. S. Philkana, “Immobilized Pseudomonas cepacia Lipase for Biodiesel Fuel Production from Soybean Oil,” Bioresource Technology, Vol. 96, No. 7, 2005, pp. 769-777. doi:10.1016/j.biortech.2004.05.029
[20] S. Hama, H. Yamaji, M. Kaieda, M. Oda, A. Kondo and H. Fukuda, “Effect of Fatty Acid Membrane Composition on Whole-Cell Biocatalysts for Biodiesel-Fuel Production,” Biochemical Engineering Journal, Vol. 21, No. 2, 2004, pp. 155-160. doi:10.1016/j.bej.2004.05.009
[21] M. Oda, M. Kaieda, S. Hama, H. Yamaji, A. Kondo and E. Izumoto, “Facilitator Effect of Immobilized Lipase-Producing Rhizopus oryzae Cells on Acyl Migration in Biodiesel-Fuel Production,” Biochemical Engineering Journal, Vol. 23, No. 1, 2004, pp. 45-51. doi:10.1016/j.bej.2004.10.009
[22] W. Du, Y. Xu, D. Liu and J. Zeng, “Comparative Study on Lipase-Catalyzed Transformation of Soybean Oil for Biodiesel Production with Different Acyl Acceptors,” Journal of Molecular Catalysis B: Enzymatic, Vol. 30, No. 3-4, 2004, pp. 125-129. doi:10.1016/j.molcatb.2004.04.004
[23] C. J. Shieh, H. F. Liao and C. C. Lee, “Optimization of Lipase-Catalyzed Biodiesel by Response Surface Methodology,” Bioresource Technology, Vol. 88, No. 2, 2003, pp. 103-106. doi:10.1016/S0960-8524(02)00292-4
[24] E. A. Ehimen, Z. F. Sun and C. G. Carrington, “Variables Affecting the in Situ Transesterification of Microalgae Lipids,” El-Sevier Fuel, Vol. 89, No. 3, 2010, pp. 677-684. doi:10.1016/j.fuel.2009.10.011
[25] S. Al-Zuhair, “Production of Biodiesel: Possibilities and Challenges,” Biofuels Bioprod Biorefining, Vol. 1, No. 1, 2007, pp. 57-66. doi:10.1002/bbb.2
[26] N. Kumar, “Biodiesel Production Technology and Feedstocks for India,” Expert Lecture at Workshop on Moving toward Sustainable Energy Systems: Exploring Global Pathways to a Common Destination Organized by University of Minnesota, Minneapolis, 2006.
[27] M. J. Haas, K. M. Scott, W. N. Marmer and T. A. Foglia, “In Situ Alkaline Transesterification: An Effective Method for the Production of Fatty Acid Esters from Vegetable Oils,” Journal of the American Oil Chemist’s Society, Vol. 81, No. 1, 2004, pp. 83-89. doi:10.1007/s11746-004-0861-3
[28] G. Hincapié, F. Mondragón and D. López, “Conventional and in Situ Transesterification of Castor Seed Oil for Biodiesel Production,” Fuel, Vol. 90, No. 4, 2011, pp. 1618-1623. doi:10.1016/j.fuel.2011.01.027
[29] R. Halim, M. K. Danquah and P. A. Webley, “Extraction of Oil from Microalgae for Biodiesel Production: A Review,” Biotechnology Advances, Vol. 30, No. 3, 2012, pp. 709-732. doi:10.1016/j.biotechadv.2012.01.001
[30] B. D. Wahlen, R. M. Willis and L. C. Seefeldt, “Biodiesel Production by Simultaneous Extraction and Conversion of Total Lipids from Microalgae, Cyanobacteria, and Wild Mixed-Cultures,” Bioresource Technology, Vol. 102, No. 3, 2011, pp. 2724-2730. doi:10.1016/j.biortech.2010.11.026
[31] K. J. Harrington and C. D’Arcy-Evans, “A Comparison of Conventional and in Situ Methods of Transesterification of Seed Oil from a Series of Sunflower Cultivars,” Journal of the American Oil Chemists’ Society, Vol. 62, No. 6, 1985, pp. 1009-1013. doi:10.1007/BF02935703
[32] S. Siler-Marinkovic and A. Tomasevic, “Transesterification of Sunflower Oil in Situ,” Fuel, Vol. 77, No. 12, 1998, pp. 1389-1391. doi:10.1016/S0016-2361(98)00028-3
[33] M. R. Andrade and J. A. V. Costa, “Mixotrophic Cultivation of Microalga Spirulina platensis Using Molasses as Organic Substrate,” Biochemical Engineering Laboratory, Department of Chemistry, Federal University Foundation of Rio Grande (FURG), Rio Grande, 2006.
[34] L. H. Pelizer, E. D. G. Danesi, C. de O. Rangel, C. E. N. Sassano, J. C. M. Carvalho, S. Sato and I. O. Moraes, “Influence of Inoculum Age and Concentration in Spirulina platensis Cultivation,” Departamento de Tecnologia Bioquimico-Farmaceutica, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Sao Paulo, 2001.
[35] J. Sheng, R. Vannela and B. E. Rittmann, “Evalution of Methods to Extract Andquantify Lipids from Synechocystis PCC 6803,” Center for Environmental Biotechnology, The Biodesign Institute, Arizona University, Tucson, 2011.
[36] Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghiradi, M. Posewitz, M. Siebert and A. Darzins, “Microalgal Triacyglycerols as Feedstock for Biofuel Production: Perspectives and Advances,” The Plant Journal, Vol. 54, No. 4, 2008, pp. 621-639. doi:10.1111/j.1365-313X.2008.03492.x
[37] A. A. Refaat, “Optimization of Biodiesel Production Using Different Techniques,” Master Thesis, Cairo University, Cairo, 2009.
[38] X. Meng, G. Chen and Y. Wang, “Biodiesel Production from Waste Cooking Oil via Alkali Catalyst and Its Engine Test,” Fuel Processing Technology, Vol. 89, No. 9, 2008, pp. 851-857. doi:10.1016/j.fuproc.2008.02.006
[39] R. Zanzi, “Biodiesel from Microalgae,” B.Sc. Report Submitted to Chemical Engineering and Technology Department, Royal School of Technology, Stockholm, 2010.
[40] G. El-Diwani, N. K. Attia and S. I. Hawash, “Development and Evaluation of Biodiesel Fuel and Byproducts from Jatropha Oil,” International Journal of Environmental Science and Technology, Vol. 6, No. 2, 2009, pp. 219-224.
[41] A. Scragg, “Biofuels: Production, Application and Development,” 2009.
[42] A. I. Bamgboye and A. C. Hansen, “Prediction of Cetane Number of Biodiesel Fuel from the Fatty Acid Methyl Ester (FAME) Composition,” International Agrophysics, Vol. 22, No. 1, 2008, pp. 21-29.
[43] J. M. Encinar, J. F. Gonzalez, A. Pardal and G. Martinez, “Transesterification of Rapeseed Oil with Methanol in the Presence of Various Co-Solvents,” Proceedings Venice 2010, Third International Symposium on Energy from Biomass and WasteVenice, Italy, 8-11 November 2010.
[44] K. Sivaramakrishnan and P. Ravikumar, “Determination of Cetane Number of Biodiesel and It’s Influence on Physical Properties,” ARPN Journal of Engineering and Applied Sciences, Vol. 7, No. 2, 2012, pp. 205-211.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.