[1]
|
J. Schulze and U. Sonnenborn, “Yeast in the Gut: From Commensals to Infectious Agents,” Deutsches Arzteblatt, Vol. 106, No. 51-52, 2009, pp. 837-842.
|
[2]
|
F. C. Odds, “Candida and Candidosis,” 5th Edition, Baillière Tindall, London, 1988.
|
[3]
|
D. R. Soll, M. Staebell, C. Langtimm, M. Pfaller, J. Hicks and T. V. G Rao, “Multiple Candida Strains in the Course of a Single Systemic Infection,” Journal of Clinical Microbiology, Vol. 26, No. 8, 1988, pp. 1448-1459.
|
[4]
|
J. D. Sobel, “Vaginitis,” New England Journal of Medicine, Vol. 337, No. 26, 1997, pp. 1896-1903.
doi:10.1056/NEJM199712253372607
|
[5]
|
R. A. Calderone, “Candida and Candidiasis,” ASM Press, Washington DC, 2002.
|
[6]
|
J. A. Sexton, V. Brown, and M. Johnston, “Regulation of Sugar Transport Andmetabolism by the Candida albicans Rgt1 Transcriptional Repressor,” Yeast, Vol. 24, No. 10, 2007, pp. 847-860. doi:10.1002/yea.1514
|
[7]
|
H. J. Lo, J. R. Kohler, B. Di Domenico, D. Loebenberg, A. Cacciapuoti and G. R. Fink, “Nonfilamentous C. albicans Mutants Are a Virulent,” Cell, Vol. 90, No. 5, 1997, pp. 939-949. doi:10.1016/S0092-8674(00)80358-X
|
[8]
|
B. R. Braun, W. S. Head, M. X. Wang and A. D. Johnson, “Identification and Characterization of TUP1-Regulated Genes in C. albicans,” Genetics, Vol. 156, No. 1, 2000, pp. 31-44.
|
[9]
|
B. R. Braun, D. Kadosh and A. D. Johnson, “NRG1, a Repressor of Filamentous Growth in C. albicans, Is Down-Regulated during Filament Induction,” EMBO Journal, Vol. 20, No. 17, 2001, pp. 4753-4761.
doi:10.1093/emboj/20.17.4753
|
[10]
|
A. M. Murad, P. Leng, M. Straffon, J. Wishart, S. Macaskill, D. MacCallum, et al., “NRG1 Represses Yeast-Hypha Morphogenesis and Hypha-Specific Gene Expression in C. albicans,” EMBO Journal, Vol. 20, No. 17, 2001, pp. 4742-4752. doi:10.1093/emboj/20.17.4742
|
[11]
|
S. P. Saville, A. L. Lazzell, C. Monteagudo and J. L. Lopez-Ribot, “Engineered Control of Cell Morphology in Vivo Reveals Distinct Roles for Yeast and Filamentous Forms of C. albicans during Infection,” Eukaryotic Cell, Vol. 2, No. 5, 2003, pp. 1053-1060.
doi:10.1128/EC.2.5.1053-1060.2003
|
[12]
|
M. S. A Khan, I. Ahmad, F. Aqil, M. Owais, M. Shahid and J. Musarrat, “Virulence and Pathogenicity of Fungal Pathogens with Special Reference to C. albicans,” In: I. Ahmad, M. Owais, M. Shahid and F. Aqil, Eds., Combating Fungal Infections: Problems and Remedy, Springer- Verlag, Berlin, 2010, pp. 21-45.
doi:10.1007/978-3-642-12173-9_2
|
[13]
|
P. Sudbery, N. Gow and J. Berman, “The Distinct Morphogenic States of Candida albicans,” Trends in Microbiology, Vol. 12, No. 7, 2004, pp. 317-324.
doi:10.1016/j.tim.2004.05.008
|
[14]
|
L. A. Merson-Davies and F. C. Odds, “A Morphology Index for Characterization of Cell Shape in C. albicans,” Journal of General Microbiology, Vol. 135, No. 11, 1989, pp. 3143-3152.
|
[15]
|
M. Montazeri and H. G. Hedrick, “Factors Affecting Spore Formation in a Candida albicans Strain,” Applied and Environmental Microbiology, Vol. 47, No. 6, 1984, pp. 1341-1342.
|
[16]
|
Y. L. Yang, “Virulence Factors of Candida Species,” Journal of Microbiology Immunology and Infection, Vol. 36, No. 4, 2003, pp. 223-228.
|
[17]
|
H. Court and P. Sudbery, “Regulation of Cdc42 GTPase Activity in the Formation of Hyphae in C. albicans,” Molecular Biology of the Cell, Vol. 18, No. 1, 2007, pp. 265-281. doi:10.1091/mbc.E06-05-0411
|
[18]
|
J. Berman, “Morphogenesis and Cell Cycle Progression in C. albicans,” Current Opinion in Microbiology, Vol. 9, No. 6, 2006, pp. 595-601.
|
[19]
|
L. H. Kimura and N. N. Pearsall, “Adherence of C. albicans to Human Vaginal and Buccal Epithelial Cells,” Journal of Infectious Diseases, Vol. 21, No. 1, 1978, pp. 64-68. doi:10.1016/j.mib.2006.10.007
|
[20]
|
J. C. Lee and R. D. King, “Characterization of C. albicans Adherence to Human Vaginal Epithelial Cells in Vitro,” Infection and Immunology, Vol. 41, No. 3, 1983, pp. 1024-1030.
|
[21]
|
J. D. Sobel, G. Muller and H. R. Buckley, “Critical Role of Germ Tube Formation in the Pathogenesis of Candidal Vaginitis,” Infection and Immunology, Vol. 44, No. 3, 1984, pp. 576-580.
|
[22]
|
J. Berman and P. E. Sudbery, “C. albicans: A Molecular Revolution Built on Lessons from Budding Yeast,” Nature Reviews Genetics, Vol. 3, No. 12, 2002, pp. 918-930.
doi:10.1038/nrg948
|
[23]
|
N. A. R. Gow, “Cell Biology and Cell Cycle of Candida albicans,” In: R. A. Calderone, Ed., Candida and Candidiasis, American Society for Microbiology, Washington, DC, 2002, pp. 145-158.
|
[24]
|
P. Sundstrom, “Candida albicans Hypha Formation and Virulence,” In: J. Heitman, Ed., Molecular Principles of Fungal Pathogenesis, American Society for Microbiology, Washington DC, 2006, pp. 45-47.
|
[25]
|
D. W. Hill and L. P. Gerbhardt, “Morphological Transformation of Candida albicans in Tissues of Mice,” Proceedings of the Society for Experimental Biology and Medicine, Vol. 92, No. 2, 1988, pp. 640-644.
|
[26]
|
P. J. Kozinn, C. L. Taschdjian and J. J. Burchall., “Transmission of P-32 Labeled Candida albicans to Newborn Mice at Birth,” American Journal of Diseases of Children, Vol. 99, No. 1, 1960, pp. 31-34.
|
[27]
|
G. Young, “The Process of Invasion and the Persistence of Candida albicans Injected Intraperitoneally into Mice,” Journal of Infectious Diseases, Vol. 102, No. 2, 1964, pp. 114-120. doi:10.1093/infdis/102.2.114
|
[28]
|
N. A. Gow, A. J. Brown and F. C. Odds, “Fungal Morphogenesis and Host Invasion,” Current Opinion in Microbiology, Vol. 5, No. 4, 2002, pp. 366-371.
|
[29]
|
G. D. Brown, “Innate Antifungal Immunity: The Key Role of Phagocytes,” Annual Review of Immunology, Vol. 29, No. 1, 2001, pp. 1-21.
doi:10.1146/annurev-immunol-030409-101229
|
[30]
|
R. Kaposzta, L. Marodi, M. Hollinshead, S. Gordon and R. P. da Silva, “Rapid Recruitment of Late Endosomes and Lysosomes in Mouse Macrophages Ingesting Candida albicans,” Journal of Cell Science, Vol. 112, No. 19, 1999, pp. 3237-3248.
|
[31]
|
L. E. Lewis, J. M. Bain, C. Lowes, C. Gillespie, F. M. Rudkin, et al., “Stage Specific Assessment of Candida albicans Phagocytosis by Macrophages Identifies Cell Wall Composition and Morphogenesis as Key Determinants,” PLOS Pathogens, Vol. 8, No. 3, 2012, Article ID: e1002578.
|
[32]
|
A. J. P. Brown, “Expression of Growth Form-Specific Factors during Morphogenesis in C. albicans,” In: R. Calderone, Ed., Candida and Candidiasis, ASM Press, Washington DC, 2002, pp. 87-93.
|
[33]
|
A. R. Holmes and M. G. Shepherd, “Proline Induced Germ-Tube Formation in C. albicans: Role of Proline Uptake and Nitrogen Metabolism,” Journal of General Microbiology, Vol. 133, No. 11, 1987, pp. 3219-3228.
|
[34]
|
E. G. Mattia, G. Corruba, L. Angiolella and A. Casone, “Induction of Germ Tube Formation by N-acetyl-D Glucosamine in Candida albicans: Uptake of Inducer and Germinative Response,” Journal of Bacteriology, Vol. 152, No. 2, 1982, pp. 555-562.
|
[35]
|
G. Tripathi, C. Wiltshire, S. Macaskill, H. Tournu, S. Budge and A. J. Brown, “Gcn4 Coordinates Morphogenetic and Metabolic Responses to Amino Acid Starvation in Candida albicans,” EMBO Journal, Vol. 21, No. 20, 2002, pp. 5448-5456. doi:10.1093/emboj/cdf507
|
[36]
|
J. F. Ernst, “Transcription Factors in Candida albicans—Environmental Control of Morphogenesis,” Microbiology, Vol. 146, No. 8, 2000, pp. 1763-1774.
|
[37]
|
J. Buffo, M. A. Herman and D. R. Soll, “A Characterization of pH-Regulated Dimorphism in Candida albicans,” Mycopathologia, Vol. 85, No. 1-2, 1984, pp. 21-30.
doi:10.1007/BF00436698
|
[38]
|
D. O. McClary, “Factors Affecting the Morphology of Candida albicans,” Annals of the Missouri Botanical Gardens, Vol. 39, No. 2, 1952, pp. 137-164.
doi:10.2307/2394509
|
[39]
|
S. Kabli, “Morphogenesis of Two Candida albicans Strains as Influenced by Growth Media, pH Value and Incubation Temperature,” American-Eurasian Journal of Agriculture and Environmental Science, Vol. 1, No. 2, 2006, pp. 127-132.
|
[40]
|
White Labs, “Cell Counting/Viability Testing,” 2013.
http://www.whitelabs.com/content/cell-countingviability-testing-0
|
[41]
|
E. G. Evans, F. C. Odds and K. T. Holland, “Optimum Conditions for Initiation of Filamentation in Candida albicans,” Canadian Journal of Microbiology, Vol. 21, No. 3, 1975, pp. 338-342. doi:10.1139/m75-048
|
[42]
|
K. L. Lee, H. R. Buckley and H. R. Campbell, “An Amino Acid Liquid Synthetic Medium for Development of Mycellal and Yeast Forms of Candida albicans,” Medical Mycology, Vol. 13, No. 2, 1975, pp. 148-153.
doi:10.1080/00362177585190271
|
[43]
|
P. Auger and J. Joly, “Factors Influencing Germ Tube Production in Candida albicans,” Mycopathologia, Vol. 61, No. 3, 1977, pp. 183-186. doi:10.1007/BF00468014
|
[44]
|
V. Paranjape and A. Datta, “Role of Nutritional Status & the Cell in pH Regulated Dimorphism of Candida albicans,” FEMS Microbiology Letters, Vol. 80, No. 2-3, 1991, pp. 333-336.
doi:10.1111/j.1574-6968.1991.tb04685.x
|
[45]
|
M. Casanova, A. M. Cervera, D. Gozalbo and J. P. Martinez, “Hemin Induces Germ Tube Formation in Candida albicans,” Infection and Immunology, Vol. 65, No. 10, 1997, pp. 4360-4364.
|
[46]
|
C. Westwater, E. Balish and D. A. Schofield, “Candida albicans-Conditioned Medium Protects Yeast Cells from Oxidative Stress: A Possible Link between Quorum Sensing and Oxidative Stress Resistance,” Eukaryotic Cell, Vol. 4, No. 10, 2005, pp. 1654-1666.
doi:10.1128/EC.4.10.1654-1661.2005
|
[47]
|
E. Mattia and A. Cassone, “Inducibility of Germ-Tube Formation in Candida albicans at Different Phases of Yeast Growth,” Microbiology, Vol. 113, No. 2, 1979, pp. 439-442. doi:10.1099/00221287-113-2-439
|
[48]
|
K. V. Clemons, J. L. Spearow, R. Parmar, M. Espiritu and D. A. Stevens, “Genetic Susceptibility of Mice to Candida albicans Vaginitis Correlates with Host Estrogen Sensitivity,” Infection and Immunology, Vol. 72, No. 8, 2004, pp. 4878-4880.
doi:10.1128/IAI.72.8.4878-4880.2004
|
[49]
|
F. Sabie and G. M. Gadd, “Induction of Germ-Tube Formation by Candida albicans in Amino Acid Liquid Synthetic Medium at 25 Degrees C,” Mycopathologia, Vol. 101, No. 2, 1988, pp. 77-83. doi:10.1007/BF00452890
|
[50]
|
H. Tournu, G. Tripathi, G. Bertram, S. Macaskill, A. Mavor, L. Walker, F. C. Odds, N. A. Gow and A. J. Brown, “Global Role of the Protein Kinase Gcn2 in the Human Pathogen Candida albicans,” Eukaryotic Cell, Vol. 4, No. 10, 2005, pp. 1687-1696.
doi:10.1128/EC.4.10.1687-1696.2005
|
[51]
|
D. C. Johnson, K. E. Cano, E. C. Kroger and D. S. McNabb, “Novel Regulatory Function for the CCAAT- Binding Factor in Candida albicans,” Eukaryotic Cell, Vol. 4, No. 10, 2005, pp. 1662-1676.
doi:10.1128/EC.4.10.1662-1676.2005
|
[52]
|
M. Bruatto, M. Gremmi, A. Nardacchione and M. Amerio, “Effect of Glucose Starvation on Germ-Tube Production by Candida albicans,” Mycopathologia, Vol. 123, No. 2, 1993, pp. 105-110. doi:10.1007/BF01365088
|
[53]
|
H. Lotz, K. Sohn, H. Brunner, F. A. Muhlschlegel and S. Rupp, “RBR1, a Novel pH-Regulated Cell Wall Gene of Candida albicans, Is Repressed by RIM101 and Activated by NRG1,” Eukaryotic Cell, Vol. 3, No. 3, 2004, pp. 776-784. doi:10.1128/EC.3.3.776-784.2004
|
[54]
|
B. Enjalbert and M. Whiteway, “Release from Quorum-Sensing Molecules Triggers Hyphal Formation during Candida albicans Resumption of Growth,” Eukaryotic Cell, Vol. 4, No. 7, 2005, pp. 1203-1210.
doi:10.1128/EC.4.7.1203-1210.2005
|
[55]
|
M. Cornet, F. Bidard, P. Schwarz, G. Da Costa, S. Blanchin-Roland, F. Dromer and C. Gaillardin, “Deletions of Endocytic Components VPS28 and VPS32 Affect Growth at Alkaline pH and Virulence through both RIM101-Dependent and RIM101-Independent Pathways in Candida albican,” Infection and Immunology, Vol. 73, No. 12, 2005, pp. 7977-7987.
doi:10.1128/IAI.73.12.7977-7987.2005
|