Gradients of Al/Al2O3 nanostructures for screening mesenchymal stem cell proliferation and differentiation


By decomposing a molecular precursor we fabricated a novel surface based on an aluminium/aluminiumoxide composite incorporating nanotopography gradient to address high-throughput and fast analysis method for studying stem cell differentiation by nanostructures. Depending on the topography of the nanostructures, mesenchymal stem cells exhibit a diverse proliferation and differentiation behavior.

Share and Cite:

Veith, M. , Dufloux, C. , Ghaemi, S. , Aktas, C. and Voelcker, N. (2013) Gradients of Al/Al2O3 nanostructures for screening mesenchymal stem cell proliferation and differentiation. Open Journal of Regenerative Medicine, 2, 74-79. doi: 10.4236/ojrm.2013.23011.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Jung, D.R., Kapur, R., Adams, T., Giuliano, K.A., Mrksich, M., Craighead, H.G. and Taylor, D.L. (2001) Topographical and physicochemical modification of material surface to enable patterning of living cells. Critical Reviews in Biotechnology, 21, 111-154. doi:10.1080/20013891081700
[2] Oha, S., Brammera, K.S., Lib, Y.S.J., Teng, D., Engler, A.J., Chien, S. and Jina, S. (2008) Stem cell fate dictated solely by altered nanotube dimensions. Proceedings of the National Academy of Sciences, 105, 2307.
[3] Bettinger, C.J., Langer, R. and Borenstein, J.T. (2009) Engineering substrate topography at the microand nanoscale to control cell function. Angewandte Chemie International Edition, 48, 5406-5415. doi:10.1002/anie.200805179
[4] Chou, L., Firth, J.D., Uitto, V.J. and Brunette, D.M. (1995) Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts. Journal of Cell Science, 108, 1563.
[5] McNamara, L.E., McMurray, R.J., Biggs, M.J.P., Kantawong, F., Oreffo, R.O.C. and Dalby, M.J. (2010) Nanotopographical control of stem cell differentiation. Journal of Tissue Engineering, 1, 120623. doi:10.4061/2010/120623
[6] Chen, W., Villa-Diaz, L.G., Sun, Y., Weng, S., Kim, J.K., Lam, R.H.W., Han, L., Fan, R., Krebsbach, P.H. and Fu, J. (2012) Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. ACS Nano, 6, 4094-4103. doi:10.1021/nn3004923
[7] Zouani, O.F., Chanseau, C., Brouillaud, B., Bareille, R., Deliane, F., Foulc, M.-P., Mehdi, A. and Durrieu, M.-C. (2012) Altered nanofeature size dictates stem cell differentiation. Journal of Cell Science, 125, 1217-1244. doi:10.1242/jcs.093229
[8] Oh, S., Brammer, K.S., Li, Y.S.J., Teng, D., Engler, A.J., Chien, S. and Jin, S. (2009) Stem cell fate dictated solely by altered nanotube dimension. Proceedings of the National Academy of Sciences, 106, 2130-2135. doi:10.1073/pnas.0813200106
[9] Martinez Mìro, M. (2012) Topographical control and characterization of Al/Al2O3 nanowire coatings for improved osseointegration of implant materials. Ph.D. Thesis, Saarland University, Saarbrücken.
[10] Wu, J., Mao, Z., Tan, H., Han, L., Ren, T. and Gao, C. (2012) Gradient biomaterials and their influences on cell migration. Interface Focus, 2, 337-355. doi:10.1098/rsfs.2011.0124
[11] Kunzler, T.P., Huwiler, C., Drobeka, T., Voros, J. and Spencer, N.D. (2007) Systematic study of osteoblast response to nanotopography by means of nanoparticledensity gradients. Biomaterials, 28, 5000-5006. doi:10.1016/j.biomaterials.2007.08.009
[12] Wang, P.Y., Clements, L.R., Thissen, H., Jane, A., Tsai, W.B. and Voelcker, N.H. (2012) Screening mesenchymal stem cell attachment and differentiation on porous silicon gradients. Advanced Functional Materials, 22, 3414-3424. doi:10.1002/adfm.201200447
[13] Walpole, A.R., Briggs, E.P., Karlsson, M., Palsgard, E. and Wilshaw, P.R. (2003) Nano-porous alumina coatings for improved bone implant interfaces. Materialwissenschaft und Werkstofftechnik, 34, 1064-1068. doi:10.1002/mawe.200300707
[14] Veith, M., Sow, E., Werner, U., Petersen, C. and Aktas, O.C. (2008) The transformation of core/shell aluminium/alumina nanoparticles into nanowires. European Journal of Inorganic Chemistry, 33, 5181-5184. doi:10.1002/ejic.200800890
[15] Veith, M., Lee, J., Miró, M.M., Akkan, C.K., Dufloux, C. and Aktas, O.C. (2012) Bi-phasic nanostructures for functional applications. Chemical Society Reviews, 41, 5117-5130. doi:10.1039/c2cs15345a
[16] Veith, M., Lee, J., Schmid, H. and Aktas, C. (2013) Ultra-rapid growth of biphasic nanowires in microand hypergravity. Small, 9, 1042-1046. doi:10.1002/smll.201201833

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.