Determination of an Innovative Consistent Law for the Rheological Behavior of Polymer/Carbon Nanotubes Composites
F. Thiébaud
DOI: 10.4236/snl.2011.11001   PDF    HTML     8,360 Downloads   13,988 Views   Citations


An innovative constitutive model for the rheological behavior of the polymer/carbon nanotubes composites is proposed in this paper. Based on experimental investigations, this consistent law gives the evolution of the composite shear viscosity versus the shear rate, over a large range, and the temperature with various carbon nanotubes mass fractions. Hence, this consistent could be implemented in a finite element code in order to lead many polymer/carbon nanotubes manufacturing process like injection molding or hot embossing.

Share and Cite:

F. Thiébaud, "Determination of an Innovative Consistent Law for the Rheological Behavior of Polymer/Carbon Nanotubes Composites," Soft Nanoscience Letters, Vol. 1 No. 1, 2011, pp. 1-5. doi: 10.4236/snl.2011.11001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Iijima, “Helical Microtubes of Graphitic Carbon,” Nature, Vol. 354, No. 6348, 1991, pp. 56-58. doi:10.1038/354056a0
[2] N. Coleman, U. Kahn, W. J. Blau and Y. K. Gun’ko, “Small but Strong: A review of the Mechanical Properties of Carbon Nanotube-Polymer Composites,” Carbon, Vol. 44, 2006, No. 9, pp. 1644-1652. doi:10.1016/j.carbon.2006.02.038
[3] O. Breuer and U. Sundaraj, “Big Returns from Small Fibers: A Review of Polymer/Carbon Nanotube Composites,” Polymer Composites, Vol. 25, No. 6, 2004, pp. 630-645. doi:10.1002/pc.20058
[4] C. C. Teng, C. C. M. Ma, Y. W. Huang, S. M. Yuen, C. C. Weng C. H. Chen and S. F. Su, “Effect of MWCNT Content on Rheological and Dynamic Mechanical Properties of Multiwalled Carbon Nanotube/Polypropylene Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 39, No. 12, 2008, pp. 1869-1875. doi:10.1016/j.compositesa.2008.09.004
[5] M. K. Seo and S. J. Park, “Electrical Resistivity and Rheological Behaviors of Carbon Nanotubes-Filled Polypropylene Composites,” Chemical Physics Letters, Vol. 395, No. 1-3, 2004, pp. 44-48. doi:10.1016/j.cplett.2004.07.047
[6] M. M. Cross, “Rheology of Non-Newtoinan Fluids: A New Flow Equation for Pseudoplastic Systems,” Journal of Colloid Science, Vol. 20, No. 5, 1965, pp. 417-437. doi:10.1016/0095-8522(65)90022-X
[7] P. P?tschke, A. R. Bhattacharyya, A. Janke and H. Goering, “Melt Mixing of Polycarbonate/Multi-Wall Carbon Nanotube Composites,” Composite Interferences, Vol. 10, No. 45, 2003, pp. 389-404. doi:10.1163/156855403771953650
[8] S. H. Lee, M. W. Kim, S. H. Kim and J. R. Youn, “Rheological and Electrical Properties of Polypropylene/MWCNT Composites Prepared with MWCNT Masterbatch Chips,” European Polymer Journal, Vol. 44, No. 6, 2008, pp. 1620-1630. doi:10.1016/j.eurpolymj.2008.03.017
[9] Y. C. Lam, Z. Y. Wang and S. C. Joshi, “Wall Slip of Concentrated Suspension in Capillary Flows,” Powder Technology, Vol. 177, No. 3, 2007, pp. 162-169. doi:10.1016/j.powtec.2007.03.044
[10] P. J. Carreau, “Rheological Equations from Molecular Network Theories,” Journal of Rheology, Vol. 16, No. 1, 1972, pp. 99-127. doi:10.1122/1.549276

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.