[1]
|
S. Ai, “Traveling Wave Fronts for Generalized Fisher Equations with Spatio-Temporal Delays,” Journal of Dif ferential Equations, Vol. 232, No. 1, 2007, pp. 104-133.
|
[2]
|
V. Capasso and L. Maddalena, “Convergence to Equilib rium States for a Reaction-Diffusion System Modelling the Spatial Spread of a Class of Bacterial and Viral Dis ease,” Journal of Mathematical Biology, Vol. 13, No. 2, 1981, pp. 173-184. doi:10.1007/BF00275212
|
[3]
|
K. Gopalsamy, “Stability and Oscillations in Delay Dif ference Differential Equations of Population Dynamics,” Kluwer Academic, Dordrecht, 1992.
doi:10.1007/978-94-015-7920-9
|
[4]
|
S. Ma, “Traveling Wavefronts for Delayed Reaction-Dif fusion Systems via a Fixed Point Theorem,” Journal of Differential Equations, Vol. 171, No. 2, 2001, pp. 294-314.
|
[5]
|
P. Popivanov, A. Slavova and P. Zecca, “Compact Trav eling Waves and Peakon Type Solutions of Several Equa tions of Mathematical Physics and Their Cellular Neural Network Realization,” Nonlinear Analysis: Real World Applications, Vol. 10, No. 3, 2009, pp. 1453-1465.
|
[6]
|
K. Schaaf, “Asymptotic Behavior and Traveling Wave Solutions for Parabolic Functional Differential Equa tions,” Transactions of the American Mathematical Society, Vol. 302, 1987, pp. 587-615.
|
[7]
|
Z. Wang, W. Li and S. Ruan, “Traveling Wave Fronts in Reaction-Diffusion Systems with Spatio-Temporal De lays,” Journal of Differential Equations, Vol. 222, No. 1, 2006, pp. 185-232. doi:10.1016/ j.jde.2005.08.010
|
[8]
|
J. Wu and X. Zou, “Traveling Wave Fronts of Reaction Diffusion Systems with Delays,” Journal of Dynamics and Differential Equations, Vol. 13, No. 3, 2001, pp. 651-687.
|
[9]
|
X. Zou and J. Wu, “Existence of Traveling Wavefronts in Delayed Reaction-Diffusion System via Monotone Itera tion Method,” Proceedings of the American Mathematical Society, Vol. 125, 1997, pp. 2589-2598.
doi:10.1090/S0002-9939-97-04080-X
|
[10]
|
D. Xu and X. Zhao, “Bistable Waves in an Epidemic Model,” Journal of Dynamics and Differential Equations, Vol. 16, No. 3, 2004, pp. 679-707.
doi:10.1007/s10884-004-6113-z
|
[11]
|
X. Zhao and W. Wang, “Fisher Waves in an Epidemic Model,” Discrete and Continuous Dynamical Systems— Series B, Vol. 4, No. 4, 2004, pp. 1117-1128.
doi:10.3934/dcdsb.2004.4.1117
|
[12]
|
X. Zhao and D. Xiao, “The Asymptotic Speed of Spread and Traveling Waves for a Vector Disease Model,” Journal of Dynamics and Differential Equations, Vol. 18, No. 4, 2006, pp. 1001-1019.
doi:10.1007/s10884-006-9044-z
|
[13]
|
W. F. Yan and R. Liu, “Existence and Critical Speed of Traveling Wave Fronts in a Modified Vector Disease Model with Distributed Delay,” Journal of Dynamical and Control Systems, Vol. 18, No. 3, 2012, pp. 355-378.
doi:10.1007/s10883-012-9148-1
|
[14]
|
G. Lin, W. T. Li and S. G. Ruan, “Asymptotic Stability of Monostable Wavefronts in Discrete-Time Integral Recursions,” Science China Mathematics, Vol. 53, No. 5, 2010, pp. 1185-1194.
|
[15]
|
Z.-Q. Xu and P.-X. Weng, “Traveling Waves in Nonlocal Diffusion Systems with Delays and Partial Quasi-Mono tonicity,” Applied Mathematics—A Journal of Chinese Universities, Vol. 26, No. 4, 2011, pp. 464-482.
doi:10.1007/s11766-011-2727-1
|
[16]
|
S.-L. Wu, H.-Q. Zhao and S.-Y. Liu, “Asymptotic Stability of Traveling Waves for Delayed Reaction-Diffusion Equations with Crossing-Monostability,” Zeitschrift für Angewandte Mathematik und Physik (ZAMP), Vol. 62, No. 3, 2011, pp. 377-397.
doi:10.1007/s00033-010-0112-1
|
[17]
|
H. Y. Wang, “Spreading Speeds and Traveling Waves for Non-cooperative Reaction—Diffusion Systems,” Journal of Nonlinear Science, Vol. 21, No. 5, 2011, pp. 747-783.
doi:10.1007/s00332-011-9099-9
|
[18]
|
X. J. Li, “Existence of Traveling Wavefronts of Nonlocal Delayed Lattice Differential Equations,” Journal of Dynamical and Control Systems, Vol. 17, No. 3, 2011, pp. 427-449. doi:10.1007/s10883-011-9124-1
|