Bioactive Low Molecular Weight Compounds in Two Traditional Spanish Products


The aim of this work focuses on the study of low molecular weight (LMW) compounds with antioxidant and antihy-pertensive effect in Iberian ham and La Serena cheese, two traditional products in Spain, in comparison to cured ham and matured Ewe’s milk cheese. Proteolysis parameters were studied, LMW compounds were isolated and their antioxidant and antihypertensive activity was analyzed. Results showed that a more intense proteolysis, expressed as peptidic nitrogen (PN), in Iberian ham (p < 0.001), can cause higher antioxidant activity in this product for both DPPH radical scavenging (p < 0.001) and metal chelating effect (p < 0.001). However, a more intense proteolysis in La Serena cheese, expressed as non protein nitrogen (NPN) (p < 0.001) and PN (p < 0.001), did not promote higher antioxidant activity in this cheese. On the other hand, no differences were found for antihypertensive activity, expressed as angiotensin I-converting enzyme (ACE) inhibitory activity, in both type of hams or cheese.

Share and Cite:

M. Timón, E. Galea, A. Andrés and M. Petrón, "Bioactive Low Molecular Weight Compounds in Two Traditional Spanish Products," Food and Nutrition Sciences, Vol. 4 No. 9B, 2013, pp. 14-22. doi: 10.4236/fns.2013.49A2003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. Fernández-García, M. Carbonell, J. Calzada and M. Núnez, “Seasonal Variation of the Free Fatty Acids Con tents of Spanish Ovine Milk Cheeses Protected by a Des ignation of Origin: A Comparative Study,” Intenational Dairy Journal, Vol. 16, No. 3, 2006, pp. 252-261. doi:10.1016/j.idairyj.2005.02.010
[2] F. Jiménez-Colmenero, J. Ventanas and F. Toldrá, “Nutri tional Composition of Dry-Cured Ham and Its Role in a Healthy Diet,” Meat Science, Vol. 84, No. 4, 2010, pp. 585-593. ,
[3] M. Carbonell, M. Núnez and E. Fernández-García, “Evo lution of the Volatile Components of Ewe Raw Milk La Serena Cheese during Ripening. Correlation with Flavour Characteristics,” Le Lait, Vol. 82, No. 6, 2002, pp. 683-698. doi:10.1051/lait:2002042
[4] M. Fernández, J. A. Ordónez, I. Cambero, C. Santos, C. Pin and L. de la Hoz, “Fatty Acid Compositions of Se lected Varieties of Spanish Dry Ham Related to Their Nu tritional Implications,” Food Chemistry, Vol. 101, No. 1, 2007, pp. 107-112. doi:10.1016/j.foodchem.2006.01.006
[5] A. Revello Chion, E. Tabacco, D. Giaccone, P. G. Peiretti, G. Battelli and G. Borreani, “Variation of Fatty Acid and Terpene Profiles in Mountain Milk and ‘Toma Piemon tese’ Cheese as Affected by Diet Composition in Different Seasons,” Food Chemistry, Vol. 121, No. 2, 2010, pp. 393-399. ,
[6] H. Korhonen and A. Pihlanto, “Food-Derived Bioactive Peptides Opportunities for Designing Future Foods,” Cur rent Pharmaceutical Design, Vol. 9, No. 16, 2003, pp. 1297-1308. ,
[7] M. Miguel, M. M. Contreras, I. Recio and A. Aleixandre, “ACE-Inhibitory and Antihypertensive Properties of a Bovine Casein Hydrolysate,” Food Chemistry, Vol. 112, No. 1, 2009, pp. 211-214. ,
[8] A. Pihlanto, T. Virtanen and H. Korhonen, “Angiotensin I Converting Enzyme (ACE) Inhibitory Activity and Anti hypertensive Effect of Fermented Milk,” International Dairy Journal, Vol. 20, No. 1, 2010, pp. 3-10. doi:10.1016/j.idairyj.2009.07.003
[9] B. Hernández-Ledesma, M. Ramos, I. Recio and L. Amigo, “Effect of β-Lactoglobulin Hydrolysis with Ther molysin under Denaturing Temperatures on the Release of Bioactive Peptides,” Journal of Chromatography A, Vol. 1116, No. 1-2, 2006, pp. 31-37. doi:10.1016/j.chroma.2006.03.006
[10] B. Hernández-Ledesma, M. Ramos and J. A. Gómez-Ruiz, “Bioactive Components of Ovine and Caprine Cheese Whey,” Small Ruminant Research, Vol. 101, No. 1, 2011, pp. 196-204. ,
[11] J. A. Gómez-Ruiz, G. Taborda, L. Amigo, I. Recio and M. Ramos, “Identification of ACE Inhibitory Peptides in Dif ferent Spanish Cheeses by Tandem Mass Spectrometry,” European Food Research and Technology, Vol. 223, No. 5, 2006, pp. 595-601. doi:10.1007/s00217-005-0238-0
[12] M. J. Torres-Llanez, A. F. González-Córdova, A. Hernán dez-Mendoza, H. S. García and B. Vallejo-Córdoba, “An giotensin-Converting Enzyme Inhibitory Activity in Mexi can Fresco Cheese,” Journal of Dairy Science, Vol. 94, No. 8, 2011, pp. 3794-3800. doi:10.3168/jds.2011-4237
[13] A. Jang and M. Lee, “Purification and Identification of Angiotensin Converting Enzyme Inhibitory Peptides from Beef Hydrolysates,” Meat Science, Vol. 69, No. 4, 2005, pp. 653-661. ,
[14] A. M. Ahhmed and M. Muguruma, “A Review of Meat Protein Hydrolysates and Hypertension,” Meat Science, Vol. 86, No. 1, 2010, pp. 110-118. doi:10.1016/j.meatsci.2010.04.032
[15] E. Escudero, M. A. Sentandreus, K. Arihara and F. Toldrá, “Angiotensin I-Converting Enzyme Inhibitory Peptides Generated from in Vitro Gastrointestinal Digestion of Pork Meat,” Journal of Agricultural and Food Chemistry, Vol. 58, No. 5, 2010, pp. 2895-2901. doi:10.1021/jf904204n
[16] A. M. Sentandreu and F. Toldra, “Evaluation of ACE Inhibitory Activity of Dipeptides Generated by the Action of Porcine Muscle Dipeptidyl Peptidases,” Food Chemis try, Vol. 102, No. 2, 2007, pp. 511-515. doi:10.1016/j.foodchem.2006.04.018
[17] K. Arihara and M. Ohata, “Bioactive Compounds in Meat,” In: F. Toldrá, Ed., Meat Biotechnology, Aomori, Japan, 2008, pp. 231-249. doi:10.1007/978-0-387-79382-5_11
[18] T. Vactag, L. Popovic, S. Popovic, L. Petrovic and D. Pericin, “Antioxidant and Angiotensin-I Converting En zyme Inhibitory Activity in the Water-Soluble Protein Ex tract from Petrovac Sausage (Petrovská Kolbása),” Food Control, Vol. 21, No. 9, 2010, pp. 1298-1302. doi:10.1016/j.foodcont.2010.03.004
[19] K. Suetsuna, H. Ukeda and H. Ochi, “Isolation and Char acterization of Free Radical Scavenging Activities Pep tides Derived from Casein,” Journal of Nutritional Bio chemistry, Vol. 11, No. 3, 2000, pp. 128-131. doi:10.1016/S0955-2863(99)00083-2
[20] S. G. Rival, C. G. Boeriu and H. J. Wichers, “Caseins and Casein Hydrolysates. 2. Antioxidative Properties and Re levance to Lipoxygenase Inhibition,” Journal of Agricul tural and Food Chemistry, Vol. 49, No. 1, 2001, pp. 295-302. doi:10.1021/jf0003911
[21] S. Sakanaka, Y. Tachibana, N. Ishihara and L. R. Juneja, “Antioxidant Properties of Casein Calcium Peptides and Their Effects on Lipid Oxidation in Beef Homogenates,” Journal of Agricultural and Food Chemistry, Vol. 53, No. 2, 2005, pp. 464-468. doi:10.1021/jf0487699
[22] B. Hernández-Ledesma, A. Dávalos, B. Bartolomé and L. Amigo, “Preparation of Antioxidant Enzymatic Hydro lysates from Alphalactalbumin and Beta-Lactoglobulin. Identification of Active Peptides by HPLC-MS/MS,” Jour nal of Agricultural and Food Chemistry, Vol. 53, No. 3, 2005, pp. 588-593. ,
[23] M. M. Contreras, B. Hernández-Ledesma, L. Amigo, P. J. Martín-álvarez and I. Recio, “Production of Antioxidant Hydrolyzates from a Whey Protein Concentrate with Ther molysin: Optimization by Response Surface Methodology,” Food Science and Technology, Vol. 44, No. 1, 2011, pp. 9-15.
[24] K. H. Farvin, C. Baron, N. Nielsen, J. Otte and C. Jacob sen, “Antioxidant Activity of Yoghurt Peptides: Part 2— Characterisation of Peptide Fractions,” Food Chemistry, Vol. 123, No. 4, 2010, pp. 1090-1097. doi:10.1016/j.foodchem.2010.05.029
[25] A. Saiga, S. Tanabe and T. Nishimura, “Antioxidant Ac tivity of Peptides Obtained from Porcine Myofibrillar Proteins by Protease Treatment,” Journal of Agricultural and Food Chemistry, Vol. 51, No. 12, 2003, pp. 3661 3667. doi:10.1021/jf021156g
[26] W. Sun, H. Zhao, Q. Zhao, M. Zhao, B. Yang, N. Wu, et al., “Structural Characteristics of Peptides Extracted from Cantonese Sausage during Drying and Their Antioxidant Activities,” Innovative Food Science and Emerging Tech nologies, Vol. 10, No. 4, 2009, pp. 558-563. ,
[27] J. M. Broncano, M. L. Timón, V. Parra, A. I. Andrés and M. J. Petrón, “Use of Proteases to Improve Oxidative Sta bility of Fermented Sausages by Increasing Low Molecu lar Weight Compounds with Antioxidant Activity,” Food Research International, Vol. 44, No. 9, 2011, pp. 2655 2659. ,
[28] J. M. Broncano, J. Otte, M. J. Petrón, V. Parra and M. L. Timón, “Isolation and Identification of Low Molecular Weight Antioxidant Compounds from Fermented ‘Cho rizo’ Sausages,” Meat Science, Vol. 90, No. 2, 2012, pp. 494-501. doi:10.1016/j.meatsci.2011.09.015
[29] Determination of Nitrogen Content, ISO 937:1978 Stand ard, In International Standards Meat and Meat Products, International Organization for Standardization, Geneva, 1978.
[30] M. J. Benito, F. Núnez, M. G. Córdoba, A. Martín and J. J. Córdoba, “Generation of Non-Protein Nitrogen and Vola tile Compounds by Penicillium Chrysogenum Pg222 Ac tivity on Pork Myofibrillar Proteins,” Food Microbiology, Vol. 22, No. 6, 2005, pp. 513-519. doi:10.1016/
[31] V. Parra, J. Otte, M. J. Petrón, J. M. Broncano and M. L. Timón, “Identification of Radical Scavenging Peptides (<3kDa) from Burgos-Type Cheese,” LWT-Food Science and Technology, in Revision, 2013.
[32] L. Ong and N. P. Shah, “Release and Identification of Angiotensin-Converting Enzyme-Inhibitory Peptides as Influenced by Ripening Temperatures and Probiotic Ad juncts in Cheddar Cheeses,” Food Science and Technol ogy, Vol. 41, No. 9, 2008, pp. 1555-1566.
[33] M. Clariana, L. Guerrero, C. Sárraga and J. A. Garcia Regueiro, “Effects of High Pressure Application (400 and 900 MPa) and Refrigerated Storage Time on the Oxida tive Stability of Sliced Skin Vacuum Packed Dry-Cured Ham,” Meat Science, Vol. 90, No. 2, 2012, pp. 323-329. doi:10.1016/j.meatsci.2011.07.018
[34] T. Pérez-Palacios, J. Ruiz, J. M. Barat, M. C. Aristoy and T. Antequera, “Influence of Pre-Cure Freezing of Iberian Ham on Proteolytic Changes throughout the Ripening Process,” Meat Science, Vol. 85, No. 1, 2010, pp. 121-126. doi:10.1016/j.meatsci.2009.12.015
[35] L. Martín, J. J. Córdoba, T. Antequera, M. L. Timón and J. Ventanas, “Effects of Salt and Temperature on Proteolysis during Ripening of Iberian Ham,” Meat Science, Vol. 49, No. 2, 1998, pp. 145-153. doi:10.1016/S0309-1740(97)00129-0
[36] M. Prevolnik, M. Skrlep, L. Janes, S. Velikonja-Bolta, D. Skorjanc and M. Candek-Potokar, “Accuracy of Near In frared Spectroscopy for Prediction of Chemical Composi tion, Salt Content and Free Amino Acids in Dry-Cured Ham,” Meat Science, Vol. 88, No. 2, 2011, pp. 299-304. ,
[37] L. Martín, T. Antequera, J. Ventanas, R. Benítez-Donoso and J. J. Córdoba, “Free Amino Acids and Other Non Volatile Compounds Formed during Processing of Iberian Ham,” Meat Science, Vol. 59, No. 4, 2001, pp. 363-368. doi:10.1016/S0309-1740(01)00088-2
[38] R. Virgili, G. Saccani, L. Gabba, E. Tanzi and C. S. Bor dini, “Changes of Free Amino Acids and Biogenic Amines during Extended Ageing of Italian Dry-Cured Ham,” LWT-Food Science and Technology, Vol. 40, No. 5, 2007, pp. 871-878. doi:10.1016/j.lwt.2006.03.024
[39] E. Escudero, M. C. Aristoy, H. Nishimura, K. Arihara and F. Toldrá, “Antihypertensive Effect and Antioxidant Ac tivity of Peptide Fractions Extracted from Spanish Dry Cured Ham,” Meat Science, Vol. 91, No. 3, 2012, pp. 306-311. doi:10.1016/j.meatsci.2012.02.008
[40] B. Li, F. Chen, X. Xang, B. Ji and Y. Wu, “Isolation and Identification of Antioxidative Peptides from Porcine Col lagen Hydrolysate by Consecutive Chromatography and Electrospray Ionization-Mass Spectrometry,” Food Chem istry, Vol. 102, No. 4, 2007, pp. 1135-1143. ,
[41] R. Ohba, T. Deguchi, M. Kishikawa, F. Arsyad, S. Mori mura and K. Kida, “Physiological Functions of Enzy matic Hydrolysates of Collagen or Keratin Contained in Livestock and Fish Waste,” Food Science and Technology Research, Vol. 9, No. 1, 2003, pp. 91-93. doi:10.3136/fstr.9.91
[42] E. K. Kim, S. J. Lee, B. T. Jeon, S. H. Moon, B. K. Kim and T. K. Park, “Purification and Characterisation of An tioxidative Peptides from Enzymatic Hydrolysates of Venison Protein,” Food Chemistry, Vol. 114, No. 4, 2009, pp. 1365-1370. doi:10.1016/j.foodchem.2008.11.035
[43] H. C. Wu, H. M. Chen and C. Y. Shiau, “Free Amino Ac ids and Peptides as Related to Antioxidant Properties in Protein Hydrolysates of Mackerel (Scomber austriasicus),” Food Research International, Vol. 36, No. 9-10, 2003, pp. 949-957. doi:10.1016/S0963-9969(03)00104-2
[44] X. X. Li, L. J. Han and L. J. Chen, “In Vitro Antioxidant Activity of Protein Hydrolysates Prepared from Corn Gluten Meal,” Journal of the Science of Food and Agri culture, Vol. 88, No. 9, 2008, pp. 1660-1666. doi:10.1002/jsfa.3264
[45] K. Katayama, E. H. Anggraeni, T. Mori, M. A. Ahhmed, S. Kawahara, M. Sugiyama, et al., “Porcine Skeletal Muscle Troponin Is a Good Source of Peptides with Angiotensin I Activity and Antihypertensive Effects in Spontaneously Hypertensive Rats,” Journal of Agricultural and Food Chemistry, Vol. 56, No. 2, 2008, pp. 355-360. doi:10.1021/jf071408j
[46] M. Muguruma, M. A. Ahhmed, K. Katayama, S. Kawa hara, M. Maruyama and T. Nakamura, “Identification of Pro-Drug Type Inhibitory Peptide Sourced from Porcine Myosin B: Evaluation of Its Antihypertensive Effects in Vivo,” Food Chemistry, Vol. 114, No. 2, 2009, pp. 516 522. ,
[47] E. Galán, F. Prados, A. Pino, L. Tejada and J. Fernán dez-Salguero, “Influence of Different Amounts of Vege table Coagulant from Cardoon Cynara cardunculus and Calf Rennet on the Proteolysis and Sensory Characteris tics of Cheeses Made with Sheep Milk,” International Dairy Journal, Vol. 18, No. 1, 2008, pp. 93-98. doi:10.1016/j.idairyj.2007.06.003
[48] A. H. Varnam and J. P. Sutherland, “Milk and Milk Pro ducts,” In: C. Y. Hall, Ed., Technology, Chemistry and Microbiology (Food Products Series 1), London, 1994.
[49] M. Nunez, B. F. del Pozo, M. A. Rodríguez, P. Gaya and M. Medina, “Effect of Vegetable and Animal Rennet on Chemical, Microbiological, Rheological and Sensory Characteristics of La Serena Cheese,” Journal of Dairy Research, Vol. 58, No. 4, 1991, pp. 511-519. doi:10.1017/S0022029900030120
[50] B. F. del Pozo, P. Gaya, M. Medina, M. A. R. Marín and M. Nunez, “Changes in Chemical and Rheological Cha racteristics of La Serena Ewes’ Milk Cheese during Rip ening,” Journal of Dairy Research, Vol. 55, No. 3, 1988, pp. 457-464. doi:10.1017/S0022029900028715
[51] J. Fernández-Salguero and E. Sanjuán, “Influence of Vegetable and Animal Rennet on Proteolysis during Rip ening in Ewes’ Milk Cheese,” Food Chemistry, Vol. 64, No. 2, 1999, pp. 177-183. ,
[52] J. Fernández-Salguero, L. Tejada and R. Gómez, “Use of Powdered Vegetable Coagulant in the Manufacture of Ewe’s Milk Cheeses,” Journal of the Science of Food and Agriculture, Vol. 82, No. 4, 2002, pp. 464-468. doi:10.1002/jsfa.1066
[53] F. J. Delgado, J. Rodríguez-Pinilla, J. González-Crespo, R. Ramírez and I. Roa, “Proteolysis and Texture Changes of a Spanish Soft Cheese (‘Torta del Casar’) Manufactured with Raw Ewe Milk and Vegetable Rennet during Ripen ing,” International Journal of Food Science and Tech nology, Vol. 45, No. 3, 2010, pp. 512-519. doi:10.1111/j.1365-2621.2009.02157.x
[54] M. J. Sousa and F. X. Malcata, “Comparison of Plant and Animal Rennets in Terms of Microbiological, Chemical, and Proteolysis Characteristics of Ovine Cheese,” Journal of Agricultural and Food Chemistry, Vol. 45, No. 1, 1997, pp. 74-81. doi:10.1021/jf9506601
[55] L. Tejada, A. Abellán, J. M. Cayuela, A. Martínez-Cacha and J. Fernández-Salguero, “Proteolysis in Goats’ Milk Cheese Made with Calf Rennet and Plant Coagulant,” In ternational Dairy Journal, Vol. 18, No. 2, 2008, pp. 139 146. doi:10.1016/j.idairyj.2007.08.010
[56] M. Yvon and L. Rijnen, “Cheese Flavour Formation by Amino Acid Catabolism,” International Dairy Journal, Vol. 11, No. 4-7, 2001, pp. 185-201. doi:10.1016/S0958-6946(01)00049-8
[57] S. Pritchard, M. Phillips and K. Kailasapathy, “Identi fication of Bioactive Peptides in Commercial Cheddar Cheese,” Food Research International, Vol. 43, No. 5, 2010, pp. 1545-1548. ,
[58] S. Hogan, L. Zhang, H. Wang and K. Zhou, “Develop ment of Antioxidant Rich Peptides from Milk Protein by Microbial Proteases and Analysis of Their Effects on Lipid Peroxidation in Cooked Beef,” Food Chemistry, Vol. 117, No. 3, 2009, pp. 438-443. doi:10.1016/j.foodchem.2009.04.040
[59] X. Peng, Y. Xiong and B. Kong, “Antioxidant Activity of Peptide Fractions from Whey Protein Hydrolysates as Measured by Electron Spin Resonance,” Food Chemistry, Vol. 113, No. 1, 2009, pp. 196-201. doi:10.1016/j.foodchem.2008.07.068
[60] T. Saito, T. Nakamura, H. Kitazawa, Y. Kawai and T. Itoh, “Isolation and Structural Analysis of Antihypertensive Peptides that Exist Naturally in Gouda Cheese,” Journal of Dairy Science, Vol. 83, No. 7, 2000, pp. 1434-1440. doi:10.3168/jds.S0022-0302(00)75013-2
[61] J. A. Gómez-Ruiz, M. Ramos and I. Recio, “Identification and Formation of Angiotensin-Converting Enzyme-Inhi bitory Peptides in Manchego Cheese by High Perform ance Liquid Chromatography Tandem Mass Spectrome try,” Journal of Chromatography A, Vol. 1054, No. 1-2, 2004, pp. 269-277. doi:10.1016/j.chroma.2004.05.022
[62] A. Okamoto, H. Hanagata, E. Matsumoto, Y. Kawamura, Y. Koizumi and F. Yanagida, “Angiotensin I Converting Enzyme Inhibitory Activities of Various Fermented Milks,” Bioscience, Biotechnology and Biochemistry, Vol. 59, No. 6, 1995, pp. 1147-1149. doi:10.1271/bbb.59.1147
[63] L. Lignitto, V. Cavatorta, S. Balzan, G. Gabai, G. Gala verna, E. Novelli, et al., “Angiotensin-Converting En zyme Inhibitory Activity of Water-Soluble Extracts of Asiago D’Allevo Cheese,” International Dairy Journal, Vol. 20, No. 1, 2010, pp. 11-17. doi:10.1016/j.idairyj.2009.07.001

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.