Heart Valve Lesions Due to the Formation of a Beta-Hemolytic Streptococ Role of Adhesion Molecules


Objectives: A rise in the levels of adhesion molecules such as VCAM-1, ICAM-1and E-selectin in valve disease patients has been reported lately. In our study, by detecting the presence of adhesion molecule expression in the valve endothelium we will try to show the level of adhesion molecules in peripheral blood leucocytes. Materials and Methods: Valve samples were obtained from patients having undergone aortic and mitral valve replacement due to symptomatic aortic stenosis/aortic insufficiency and/or mitral stenosis/mitral insufficiency. The clinical preoperative diagnosis was made using two-dimensional echocardiography and Doppler echocardiography. Rheumatic valves were in group B (n = 20). Group A (n = 8) constituted the control group. Immunohistochemical staining was performed using CD4, CD8, CD54/ICAM-1, and CD106/VCAM-1. Flow cytometric analysis was performed. The Kolmogorov-Smirnov test and Fisher’s exact test were used for the comparison of categorical variables. Results: Group A (non-rheumatic) patients were found to be older than group B (rheumatic) patients (59.8 ± 11.4 years vs. 45.3 ± 11.8 years, p = 0.008). In group B VCAM-1 level was higher than that of group A (296.6 ± 21.2 vs. 258.5 ± 42.1, p = 0.004). CD11b monocyte in group B was higher than in group A (98.8 ± 0.5 vs. 92.9 ± 9.7, p = 0.003). CD11b granulocyte was higher in group B than in group A (99.96 ± 0.05 vs. 93.79 ± 13.26, p = 0.33). Significant differences were not determined in the other parameters. Conclusion: The fact that increases in serum VCAM-1 and CD-11b only occurred in patients with rheumatic valvular disease in our study suggests that inflammation in patients with the same hemodynamic disorder is higher in rheumatic valvular disease than in the ones with non-rheumatic valvular disease.

Share and Cite:

S. Altaner, T. Kurum, M. Demir, B. Turgut, T. Ege and E. Duran, "Heart Valve Lesions Due to the Formation of a Beta-Hemolytic Streptococ Role of Adhesion Molecules," Surgical Science, Vol. 4 No. 8, 2013, pp. 371-376. doi: 10.4236/ss.2013.48073.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. W. Cunningham, “Pathogenesis of Group A Streptoccal Infections,” Clinical Microbiology Reviews, Vol. 13, No. 3, 2000, pp. 470-511. doi:10.1128/CMR.13.3.470-511.2000
[2] S. Roberts, S. Kosanke, S. T. Dunn, D. Jankelow, M. G. C. Duran and M. W. Cunningam, “Pathogenetic Mechanism in Rheumatic Carditis: Focus on Valvular Endothelium,” The Journal of Infectious Diseases, Vol. 183, No. 3, 2001, pp. 507-511. doi:10.1086/318076
[3] G. Murphy, “The Characteristic Rheumatic Lesions of Striated and of Non-Striated or Smooth Muscle Cells of the Heart,” Medicine (Baltimore), Vol. 42, No. 2, 1963, pp. 73-118. doi:10.1097/00005792-196303000-00001
[4] G. H. Stollermann, “Rheumatic Fever and Streptococcal Infection,” Grune and Stratton, New York, 1975.
[5] A. Saxena, “Rheumatic Fever and Long-Term Sequelae in Children,” Current Treatment Options in Cardiovascular Medicine, Vol. 4, No. 4, 2002, pp. 309-319. doi:10.1007/s11936-002-0011-7
[6] World Health Organization, “Rheumatic Fever and Rheumatic Heart Disease,” Report of an Expert Panel, Geneva, 2004.
[7] J. C. Rowe, F. Bland, H. B. Sprague and P. D. White, “Course of Mitral Stenosis without Surgery: 10 and 20 Years Perspectives,” Annals of Internal Medicine, Vol. 52, No. 4, 1960, pp. 741-749. doi:10.7326/0003-4819-52-4-741
[8] E. L. Kaplan, “Pathogenesis of Acute Rheumatic Fever and Rheumatic Heart Disease: Evasive after Half a Centruy of Clinical, Epidemiological, and Laboratory Investigation,” Heart, Vol. 91, 2005, pp. 3-4. doi:10.1136/hrt.2004.034744
[9] L. L. Minich, L. Y. Tani, L. T. Pagotto, R. E. Shaddy and L. G. Veasy, “Doppler Echocardiography Distinguishes between Silent Mitral Regurgitation in Patients with Rheumatic Fever,” Clinical Cardiology, Vol. 20, No. 11, 1997, pp. 924-926. doi:10.1002/clc.4960201105
[10] W. Doerr, W. Giese, L. D. Leder and W. Remmele, “Organpathologie, Band I: Herz und Gef??e, Blut und Blutbereitende Organe, Atemwege und Lungen,” Georg Thieme Verlag, Stuttgart, 1974.
[11] S. J. Weiss, “Tissue Destruction by Neutrophils,” The New England Journal of Medicine, Vol. 320, No. 6, 1989, pp. 365-376. doi:10.1056/NEJM198902093200606
[12] H. A. Papadaki, “Cell Adhesion Molecules in Haematology,” Haema, Vol. 2, 1999, pp. 180-191.
[13] T. A. Springer, “Adhesion Receotors of the Immune System,” Nature, Vol. 346, No. 6283, 1990, pp. 425-434. doi:10.1038/346425a0
[14] R. Piggot and W. Newman, “Circulating Adhesion Molecules in Disease,” Immunology Today, Vol. 14, No. 10, 1993, pp. 506-512. doi:10.1016/0167-5699(93)90267-O
[15] M. J. Elices, L. Osborn, Y. Takada, C. Crouse, S. Luhowskj, M. E. Hemler and R. R. Lobb, “VCAM-1 on Activated Endothelium Interacts with the Leucocytes Integrin VLA-4 at the Site Distinct from VLA-4/Fibronectin Binding Site,” Cell, Vol. 60, No. 4, 1990, pp. 577-584. doi:10.1016/0092-8674(90)90661-W
[16] C. H. Shahi, N. K. Ghasias, M. Goggins, B. Foley, P. Crean, D. Kelleher and M. Walsh, “Elevated Levels of Circulating Soluble Adhesion Molecules in Patients with Nonrheumatic Aortic Stenosis,” American Journal of Cardiology, Vol. 79, No. 7, 1997, pp. 980-982. doi:10.1016/S0002-9149(97)00027-1
[17] N. K. Ghaisas, J. B. Foley, D. S. O’Briain, P. Crean, D. Kelleher and M. Walsh, “Adhesion Molecules in Nonrheumatic Aortic Valve Disease: Endothelial Expressio, Serum Levels and Effects of Valve Replacement,” Journal of the American College of Cardiology, Vol. 36, No. 7, 2000, pp. 2257-2262. doi:10.1016/S0735-1097(00)00998-0
[18] E. Yetkin, A. R. Erbay, M. Ileri, H. Turhan, M. Balci, S. Cehreli, G. Yetkin and D. Demirkan, “Levels of Circulating Adhesion Molecules in Rheumatic Mitral Stenosis,” American Heart Journal, Vol. 88, No. 10, 2001, pp. 1209-1211.
[19] N. Patey, P. Lesavre, L. Halbwaschs-Macarelli and L. H. Noel, “Adhesion Molecules in Human Cresentric Glomerulojnephritis,” The Journal of Pathology, Vol. 179, No. 4, 1996, pp. 414-420. doi:10.1002/(SICI)1096-9896(199608)179:4<414::AID-PATH601>3.0.CO;2-J
[20] B. I. Tropea, P. Huie, J. P. Cooke, P. S. Tsao, R. K. Sibley and C. K. Zarins, “Hypertension-Enhanced Monocyte Adhesion in Experimental Atherosclerosis,” Journal of Vascular Surgery, Vol. 23, No. 4, 1996, pp. 596-605. doi:10.1016/S0741-5214(96)80038-3
[21] A. H. J. Gearing and W. Newman, “Circulating Adhesion Molecules in Disease,” Immunology Today, Vol. 14, 1993, pp. 506-512. doi:10.1016/0167-5699(93)90267-O
[22] C. M. Ballantyne, E. A. Mainolfi, J. B. Young, N. T. Windsor, B. Cocanougher, E. C. Lawrence, M. S. Polack, M. L. Entman and R. Rothlein, “Relationship of Increased Levels of Circulating Intercellular Adhesion 1 after Heart Transplantation to Rejection: Human Leucocyte Antigen Mismatch and Survival,” The Journal of Heart and Lung Transplantation, Vol. 13, No. 4, 1994, pp. 597-603.
[23] K. Nakai, C. Itoh, K. Kawazoe, Y. Miura, H. Sotyanagi, K. Hotta, T. Itoh, J. Kamata and K. Hiramori, “Concentration of Soluble Vascular Adesion Molecule-1 Correlated with Expression of VCAM-1 mRNA in Human Atherosclerotic Aorta,” Coronary Artery Disease, Vol. 6, No. 6, 1996, pp. 497-502.
[24] E. Yetkin, A. R. Erbay, H. Turhan, M. Balci, F. Yetkin, G. Yetkin, M. Ileri, K. Senen, R. Atak and S. Cehreli, “Changes in Plasma Levels of Adhesion Molecules after Percutaneous Mitral Balloon Valvuloplasty,” Cardiovascular Pathology, Vol. 13, No. 2, 2004, pp. 103-108. doi:10.1016/S1054-8807(03)00128-5
[25] M. C. Chen, H. W. Chang, S. S. Juang, H. K. Yip, C. J. Wu, T. H. Yu and C. I. Cheng, “Percutaneous Transluminal mitral Valvuloplasty Reduces Circulating Vascular Cell Adhesion Molecule-1 in Rheumatic Mitral Stenosis,” Chest, Vol. 125, No. 4, 2004, pp. 1213-1217. doi:10.1378/chest.125.4.1213
[26] A. M. Muller, C. Cronen, L. I. Kupferwasser, H. Oelert, K. M. Muller and C. J. Kirkpatrick, “Expression of Endothelial Cell Adhesion Molecules on Heart Valves: Up-Regulation in Degeneration As Well As Acute Endocarditis,” The Journal of Pathology, Vol. 191, No. 1, 2000, pp. 54-60. doi:10.1002/(SICI)1096-9896(200005)191:1<54::AID-PATH568>3.0.CO;2-Y
[27] L. Wallby, B. Janerot-Sjoberg, T. Steffensen and M. Broqvist, “T Lymphocyte Infiltration in Non-Rheumatic Aortic Stenosis: A Comparative Descriptive Study between Tricuspid and Bicuspid Aortic Valves,” Heart, Vol. 88, 2002, pp. 348-351. doi:10.1136/heart.88.4.348

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.