A Comparison of Active and Passive Metamaterials from Equivalent Lumped Elements Modes


With ever-increasing operating frequencies and complicated artificial structures, loss effects become more and more important in applications of metamaterials. Based on circuit theory and transmission line principle, the design equations for effective electromagnetic (EM) parameters (attenuation constant α, phase constant β, characteristic impedance Z0) of general active and passive metamaterial are compared and derived from the equivalent lumped circuit parameters (R, G, LL, CL, LR, CR). To verify the design equations, theα, βand Z0 indifferent cases, including balanced, unbalanced, lossless, passive and active, are shown by numerical simulations. The results show that using the active method can diminish the loss effects. Meantime, it also has influence on phase constant and real part of characteristic impedance.

Share and Cite:

Ge, Y. , Huang, H. , Liu, Y. , Sun, H. , Lv, X. and Si, L. (2013) A Comparison of Active and Passive Metamaterials from Equivalent Lumped Elements Modes. Optics and Photonics Journal, 3, 260-264. doi: 10.4236/opj.2013.32B061.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. M. Pozar, Microwave Engineering, New York: Wiley, 1998.
[2] C. Caloz and T. Itoh, “Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications,” New York: J. Wiley & IEEE, 2006.
[3] V. G. Veselogo, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Soviet Physics Uspekhi, Vol. 10, No. 4, 1968, pp. 509-514. doi:10.1070/PU1968v010n04ABEH003699
[4] R. A. Shelby, D. R. Smith and S. Schultz, “Experimental Verification of A Negative Index of Refraction,” Science, Vol. 292, 2001, pp. 77-79. doi:10.1126/science.1058847
[5] W. Zhu, I. D. Rukhlenko, L. M. Si and M. Premaratne, “Graphene-Enabled Tenability of Optical Fishnet Metamaterials,” Applied Physics Letters, Vol. 102, 2013, pp. 121911. doi:10.1063/1.4799281
[6] Y. Liu, L. M. Si, S. H. Zhu and H. Xin, “Experimental Realization of Integrated THz Electromagnetic Crystals (EMXT) H-Plane Horn Antenna,” Electronics Letters, Vol. 47, pp. 80–82, Jan. 2011. doi:10.1049/el.2010.3493
[7] L. M. Si, Y. Liu, H. Sun, X. Lv and W. Zhu, “Experimental Relization of High Transmittance THz 90o-Bend Waveguide Using EMXT Structure,” IEEE Photonics Technology Letters, Vol. 25, No. 5, 2013, pp. 519-522. doi:10.1109/LPT.2013.2244878
[8] L. M. Si, Y. Yuan, H. J. Sun and X. Lv, “Characterization and Application of Planar Terahertz Narrow Bandpass Filter with Metamaterial Resonators,” 2008 International Workshop on Metamaterials, Nanjing, pp. 351-354, 2008, pp. 9-12. doi:10.1109/META.2008.4723612
[9] L. M. Si and X. Lv, “CPW-Fed Multi-Band Omni-Directional Planar Microstrip Antenna Using Composite Metamaterial Resonators for Wireless Communications,” Progress in Electromagnetics Research, Vol. 83, 2008, pp. 133-146. doi:10.2528/PIER08050404
[10] L. M. Si, W. Zhu and X. Lv, “Determination of the Effective Constitutive Parameters of Active Transmission Line Metamaterials,” 2012 International Workshop on Metamaterials, Nanjing, pp. 1-4, 2012. doi:10.1109/META.2012.6464919
[11] L. M. Si, H. J. Sun, Y. Yuan, and X. Lv, “CPW-fed Compact Planar UWB Antenna with Circular Disc and Spiral Split Ring Resonators,” Progess in Electromagnetics Research Symposium, 2009, pp. 502-505.
[12] L. M. Si, H. J. Sun and X. Lv, “Numerical Simulations of Back-ward-to-Forward Leaky-Wave Antenna with Composite Right/Left-Handed Coplanar Waveguide,” Chinese Physics Letters, Vol. 27, 2010. doi:10.1088/0256-307X/27/3/034106
[13] L. M. Si and X. Lv, “Terahertz Waves Hairpin Microstrip Band-Pass Filter and Its Application to Overlaid Dielectric Material Detection,” Modern Physics Letters B, Vol. 22, pp. 2843-2848, 2008. doi:10.1142/S0217984908017412
[14] Y. Liu, L. M. Si, M. Wei, P. Yan, P. Yang, H. Lu, C. Zheng, Y. Yuan, J. Mou, X. Lv and H. Sun, “Some Recent Developments of Microstrip Antenna,” International Journal of Antennas and Propagation, Vol. 2012, 2012. doi:10.1155/2012/428284
[15] A. K. Iyer and G. V. Eleftheriades, “Negative Refractive Index Metamaterials Supporting 2-D Waves,” 2002 IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 2002, pp. 1067-1070. doi:10.1109/MWSYM.2002.1011823
[16] A. A. Oliner, “A Planar Negative-Refractive-Index Medium without Resonant Element,” IEEE MTT-S International Microwave Symposium Digest, Vol. 1, 2002, pp. 191-194.doi:10.1109/MWSYM.2003.1210913
[17] C. Caloz and T. Itoh, “Novel Microwave Devices and Structures Based on the Transmission Line Approach of Metamaterials,” IEEE MTT-S International Microwave Symposium Digest, Vol. 1, 2003, pp. 195-198. doi:10.1109/MWSYM.2003.1210914
[18] L. M. Si, H. J. Sun and X. Lv, “Theoretical Investigation of Terahertz Amplifier by Carbon Nanotubes within Transmission Line Metamaterials,” Microwave and Optical Technology Letters, Vol. 53, 2011, pp. 815-818. doi:10.1002/mop.25870
[19] L. M. Si, J. X. Hou, Y. Liu and X. Lv, “Retrieve the Effective Constitutive Parameters of Active Terahertz Metamaterial with Negative Differential Resistance Carbon Nanotubes,” Acta Physica Sinica, Vol. 62, No. 3, pp, 037806, 2013. doi: 10.7498/aps.62.037806
[20] L. M. Si, T. Jiang, K. Chang, T. C. Chen, X. Lv, L. Ran, and H. Xin, “Active Microwave Metamaterials Incorporating Ideal Gain Devices,” Materials, Vol. 4, 2011, pp. 73-83. doi:10.3390/ma4010073
[21] L. M. Si, W. Zhu and H. Sun, “A Compact, Planar, and CPW-Fed Metamaterial-Inspired Dual-Band Antenna,” IEEE Antennas and Wireless Propagation Letters, Vol. 12, 2013, pp. 305-308. doi:10.1109/LAWP.2013.2249037

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.