Encoding of local and global cues in domestic dogs’ spatial working memory


The current study investigated whether domestic dogs encode local and/or global cues in spatial working memory. Seven dogs were trained to use a source of allocentric information (local and/or global cues) to locate an attractive object they saw move and disappear behind one of the three opaque boxes arrayed in front of them. To do so, after the disappearance of the target object and out of the dogs’ knowledge, all sources of allocentric information were simultaneously shifted to a new spatial position and the dogs were forced to follow a U-shaped pathway leading to the hiding box. Out of the seven dogs that were trained in the detour problem, only three dogs learned to use the cues that were moved from trial to trial. On tests, local (boxes and experimenter) and/or global cues (walls of the room) were systematically and drastically shifted to a new position in the testing chamber. Although they easily succeeded the control trials, the three dogs failed to use a specific source of allocentric information when local and global cues were put in conflict. In discussion, we explore several hypotheses to explain why dogs have difficulties to use allocentric cues to locate a hidden object in a detour problem and why they do not differentiate the local and global cues in this particular experimental setting.

Share and Cite:

Fiset, S. and Malenfant, N. (2013) Encoding of local and global cues in domestic dogs’ spatial working memory. Open Journal of Animal Sciences, 3, 1-11. doi: 10.4236/ojas.2013.33A001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Hauser, M.D. (2000) Wild minds: What animals really think. Henry Holt, New York.
[2] Pearce, J. (1997) Animal learning and cognition: An introduction. 2nd Edition, Psychology Press, Hove.
[3] Roberts, W.A. (1998) Principles of animal cognition. McGraw-Hill, Boston.
[4] Shettleworth, S.J. (2010) Cognition, evolution, and behavior. 2nd Edition, Oxford University Press, Oxford.
[5] Thinus-Blanc, C. (1996) Animal spatial cognition: Behavioural and brain approach. World Scientific, Singapore.
[6] Fiset, S., Landry, F. and Ouellette, M. (2006) Egocentric search for disappearing objects in domestic dogs: Evidence for a geometric hypothesis of direction. Animal Cognition, 9, 1-12. doi:10.1007/s10071-005-0255-1
[7] Fiset, S. and Doré, F.Y. (1996) Spatial encoding in domestic cats (Felis catus). Journal of Experimental Psychology: Animal Behavior Processes, 22, 420-437. doi:10.1037/0097-7403.22.4.420
[8] Nadel, L. (1990) Varieties of spatial cognition: Psychobiological considerations. In Diamond, A., Ed., The Development and Neural Bases of Higher Cognitive Functions, Academic Press, New York, 613-626.
[9] Pick, H.L. and Lockman, J.J. (1981) From frames of reference to spatial representations. In: Liben, L.S., Patterson, A.H. and Newcombe, N., Eds., Spatial Representation and Behavior across the Life Span: Theory and Application, Academic Press, New York, 39-61.
[10] Vlasak, A.N. (2006) Global and local spatial landmarks: Their role during foraging by Columbian ground squirrels (Spermophilus columbianus). Animal Cognition, 9, 71-80. doi:10.1007/s10071-005-0006-3
[11] Carthy, J.D. (1956) Animal navigation; how animals find their way about. G. Allen & Unwin, London.
[12] Chapuis, N. (1982) Referentiels spatiaux utilises dans la réalisation d’un trajet inverse chez le chien. L’année Psychologique, 82, 75-100. doi:10.3406/psy.1982.28409
[13] Chapuis, N., Thinus-Blanc, C. and Poucet, B. (1983) Dissociation of mechanisms involved in dogs’ oriented displacements. Quarterly Journal of Experimental Psychololy B, 35, 213-219.
[14] Cattet, J. and Etienne, A.S. (2004) Blindfolded dogs relocate a target through path integration. Animal Behaviour, 68, 203-212. doi:10.1016/j.anbehav.2003.11.007
[15] Piaget, J. (1954) The construction of reality in the child. Basic Books, New York.
[16] Fiset, S., Beaulieu, C., LeBlanc, V. and Dubé, L. (2007) Spatial memory of domestic dogs (Canis familiaris) for hidden objects in a detour task. Journal of Experimental Psychology: Animal Behavior Processes, 33, 497-508. doi:10.1037/0097-7403.33.4.497
[17] Regolin, L., Vallortigara, G. and Zanforlin, M. (1995) Detour behaviour in the domestic chick: Searching for a disappearing prey or a disappearing social partner. Animal Behaviour, 50, 203-211. doi:10.1006/anbe.1995.0232
[18] Regolin, L., Vallortigara, G. and Zanforlin, M. (1995) Object and spatial representations in detour problems by chicks. Animal Behaviour, 49, 195-199. doi:10.1016/0003-3472(95)80167-7
[19] Church, D.L. and Plowright, C.M.S. (2006) Spatial encoding by bumblebees (Bombus impatiens) of a reward within an artificial flower array. Animal Cognition, 9, 131-140. doi:10.1007/s10071-005-0011-6
[20] Gould-Beierle, K.L., & Kamil, A.C. (1996) The use of local and global cues by Clark’s nutcrackers, Nucifraga columbiana. Animal Behaviour, 52, 519-528. doi:10.1006/anbe.1996.0194
[21] Sherry, D.F. (1992) Landmarks, the hippocampus, and spatial search in food-storing birds. In: Honig, W.K. and Fetterman, J.G., Eds., Cognitive Aspects of Stimulus Control, Erlbaum Associates Publishers, Hillsdale, 185-201.
[22] Spetch, M.L. and Edwards, C.A. (1988) Pigeons, Columba-livia, use of global and local cues for spatial memory. Animal Behaviour, 36, 293-296. doi:10.1016/S0003-3472(88)80274-4
[23] Vlasak, A.N. (2006) The relative importance of global and local landmarks in navigation by Columbian ground squirrels (Spermophilus columbianus). Journal of Comparative Psychology, 120, 131-138. doi:10.1037/0735-7036.120.2.131
[24] Cheng, K. (1986) A purely geometric module in the rat’s spatial representation. Cognition, 23, 149-178. doi:10.1016/0010-0277(86)90041-7
[25] Vallortigara, G., Zanforlin, M. and Pasti, G. (1990) Geometric modules in animals & apos; spatial representations: A test with chicks (Gallus gallus domesticus). Journal of Comparative Psychology, 104, 248. doi:10.1037/0735-7036.104.3.248
[26] Spetch, M.L. and Kelly, D.M. (2006) Comparative spatial cognition: Processes in landmarkand surface-based place findings. In: Wasserman, E.A. and Zentall, T.R., Eds., Comparative Cognition: Experimental Explorations of Animal Intelligence, Oxford University Press, Toronto, 210228.
[27] Cheng, K. and Spetch, M.L. (1998) Mechanisms of landmark use in mammals and birds. In: Healy, S.A., Ed., Spatial Representation in Animals, Oxford University Press, Oxford, 1-17.
[28] Cheng, K. (1989) The vector sum model of pigeon landmark use. Journal of Experimental Psychology: Animal Behavior Processes, 15, 366-375. doi:10.1037/0097-7403.15.4.366
[29] Cheng, K. and Sherry, D.F. (1992) Landmark-based spatial memory in birds (parus-atricapillus and columba-livia) —The use of edges and distances to represent spatial positions. Journal of Comparative Psychology, 106, 331341. doi:10.1037/0735-7036.106.4.331
[30] Gould-Beierle, K.L. and Kamil, A.C. (1999) The effect of proximity on landmark use in Clark’s nutcrackers. Animal Behaviour, 58, 477-488. doi:10.1006/anbe.1999.1185
[31] Fiset, S. (2007) Landmark-based search memory in the domestic dog (Canis familiaris). Journal of Comparative Psychology, 121, 345-353. doi:10.1037/0735-7036.121.4.345
[32] Fiset, S. (2009) Evidence for averaging of distance from landmarks in the domestic dog. Behavioural Processes, 81, 429-438. doi:10.1016/j.beproc.2009.03.016
[33] Fiset, S., Gagnon, S. and Beaulieu, C. (2000) Spatial encoding of hidden objects in dogs (Canis familiaris). Journal of Comparative Psychology, 114, 315-324. doi:10.1037/0735-7036.114.4.315
[34] Gagnon, S. and Doré, F.Y. (1992) Search behavior in various breeds of adult dogs (Canis familiaris): Object permanence and olfactory cues. Journal of Comparative Psychology, 106, 58-68. doi:10.1037/0735-7036.106.1.58
[35] Gagnon, S. and Doré, F.Y. (1993) Search behavior of dogs (Canis familiaris) in invisible displacement problems. Animal Learning & Behavior, 21, 246-254. doi:10.3758/BF03197989
[36] Gagnon, S. and Doré, F.Y. (1994) Cross-sectional study of object permanence in domestic puppies (Canis familiaris). Journal of Comparative Psychology, 108, 220-232. doi:10.1037/0735-7036.108.3.220
[37] Sovrano, V.A., Bisazza, A. and Vallortigara, G. (2007) How fish do geometry in large and in small spaces. Animal Cognition, 10, 47-54. doi:10.1007/s10071-006-0029-4
[38] Collett, T.S., Cartwright, B.A. and Smith, B.A. (1986) Landmark learning and visuo-spatial memories in gerbils. Journal of Comparative Physiology A, 158, 835-851. doi:10.1007/BF01324825
[39] MacDonald, S.E., Spetch, M.L., Kelly, D.M. and Cheng, K. (2004) Strategies in landmark use by children, adults, and marmoset monkeys. Learning and Motivation, 35, 322-347. doi:10.1016/j.lmot.2004.03.002
[40] Spetch, M.L., Cheng, K. and MacDonald, S.E. (1996) Learning the configuration of a landmark array: I. Touchscreen studies with pigeons and humans. Journal of Comparative Psychology, 110, 55-68. doi:10.1037/0735-7036.110.1.55
[41] Spetch, M.L., Cheng, K., MacDonald, S.E., Linkenhoker, B.A., Kelly, D.M. and Doerkson, S.R. (1997) Use of landmark configuration in pigeons and humans: II. Generality across search tasks. Journal of Comparative Psychology, 111, 14-24. doi:10.1037/0735-7036.111.1.14

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.